适用分区或者说分表最多的场景依然是针对时间字段做拆分, 这节我们详细讲讲如何更好的基于时间字段来拆分。分别按照年、月、日几个维度的实现方法以及一些细节注意事项。
日期字段拆分粒度的选择跟业务检索请求密切相关。比如保留10年数据,每次查询基于某个具体年份做为过滤条件,那按照年拆分肯定最好。例如下面SQL:
select * from ytt_pt1 where log_date >='2018-01-01' and log_date < '2019-01-01';
那我们来看下按照年单独拆分的实际例子:表ytt_pt1 ,包含1000W条记录,以年为粒度建立分区表。
mysql> create table ytt_pt1(id bigint, log_date date); Query OK, 0 rows affected (0.18 sec) mysql> insert into ytt_pt1 select id,log_date from ytt_p1 limit 10000000; Query OK, 10000000 rows affected (3 min 49.53 sec) Records: 10000000 Duplicates: 0 Warnings: 0 mysql> ALTER TABLE ytt_pt1 PARTITION BY RANGE (year(log_date)) -> ( -> PARTITION p0001 VALUES LESS THAN (2012), -> PARTITION p0002 VALUES LESS THAN (2013), -> PARTITION p0003 VALUES LESS THAN (2014), -> PARTITION p0004 VALUES LESS THAN (2015), -> PARTITION p0005 VALUES LESS THAN (2016), -> PARTITION p0006 VALUES LESS THAN (2017), -> PARTITION p0007 VALUES LESS THAN (2018), -> PARTITION p0008 VALUES LESS THAN (2019), -> PARTITION p0009 VALUES LESS THAN (2020), -> PARTITION p0010 VALUES LESS THAN (2021), -> PARTITION p_max VALUES LESS THAN (maxvalue) -> ); Query OK, 10000000 rows affected (2 min 33.31 sec) Records: 10000000 Duplicates: 0 Warnings: 0
看下按年为粒度的查询效果:以下SQL 直接走分区p0008,查询时间0.91秒, 这个时间不算短,后期可以增加过滤条件来减少查询时间。
mysql> select count(*) from ytt_pt1 where log_date >='2018-01-01' and log_date < '2019-01-01'; +----------+ | count(*) | +----------+ | 1000204 | +----------+ 1 row in set (0.91 sec) mysql> explain select count(*) from ytt_pt1 where log_date >='2018-01-01' and log_date < '2019-01-01'\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: ytt_pt1 partitions: p0008 type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 998002 filtered: 11.11 Extra: Using where 1 row in set, 1 warning (0.00 sec)
需要注意:查询只能基于字段来直接过滤,如果基于字段表达式来过滤,MySQL 不确定走哪个分区,会扫描所有分区,处理方法和单表查询一样。比如语句:
select count(*) from ytt_pt1 where year(log_date) = '2018' ;
看下执行情况: MySQL扫描所有分区,查询执行时间9秒多。
mysql> select count(*) from ytt_pt1 where year(log_date) = '2018' ; +----------+ | count(*) | +----------+ | 1000204 | +----------+ 1 row in set (9.19 sec) mysql> explain select count(*) from ytt_pt1 where year(log_date) = '2018' \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: ytt_pt1 partitions: p0001,p0002,p0003,p0004,p0005,p0006,p0007,p0008,p0009,p0010,p_max type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 9982648 filtered: 100.00 Extra: Using where 1 row in set, 1 warning (0.00 sec)
如果非坚持这种写法,可以给优化器一个提示,具体到指定分区去检索数据,或者是基于字段表达式建一个虚拟列:
mysql> select count(*) from ytt_pt1 partition(p0008) where year(log_date) = '2018' ; +----------+ | count(*) | +----------+ | 1000204 | +----------+ 1 row in set (0.84 sec)
如果查询按照月作为维度过滤比较频繁,那肯定是按照月来拆最好;比如需要检索2020年当月的某些记录来做后续数据处理,大致SQL如下:
select * from ytt_pt1_按月拆分表 where log_date in ('2020-01-01','2020-01-02',...)
第一种: 直接按照月来拆12个分区: 下面表 ytt_pt1_month1 分区类型为 LIST ,基于函数 month 直接计算。
mysql> show create table ytt_pt1_month1\G *************************** 1. row *************************** Table: ytt_pt1_month1 Create Table: CREATE TABLE `ytt_pt1_month1` ( `id` bigint DEFAULT NULL, `log_date` date DEFAULT NULL ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci /*!50100 PARTITION BY LIST (month(`log_date`)) (PARTITION p0001 VALUES IN (1) ENGINE = InnoDB, PARTITION p0002 VALUES IN (2) ENGINE = InnoDB, PARTITION p0003 VALUES IN (3) ENGINE = InnoDB, PARTITION p0004 VALUES IN (4) ENGINE = InnoDB, PARTITION p0005 VALUES IN (5) ENGINE = InnoDB, PARTITION p0006 VALUES IN (6) ENGINE = InnoDB, PARTITION p0007 VALUES IN (7) ENGINE = InnoDB, PARTITION p0008 VALUES IN (8) ENGINE = InnoDB, PARTITION p0009 VALUES IN (9) ENGINE = InnoDB, PARTITION p0010 VALUES IN (10) ENGINE = InnoDB, PARTITION p0011 VALUES IN (11) ENGINE = InnoDB, PARTITION p0012 VALUES IN (12) ENGINE = InnoDB) */ 1 row in set (0.00 sec)
比如要查询2020年前半个月的记录:查询限定在分区 p0001 里,但是时间不太理想,得0.66秒。
mysql> select count(*) from ytt_pt1_month1 where log_date in ('2020-01-01','2020-01-02','2020-01-03','2020-01-04','2020-01-05','2020-01-06','2020-01-07','2020-01-08','2020-01-09','2020-01-10','2020-01-11','2020-01-12','2020-01-13','2020-01-14','2020-01-15'); +----------+ | count(*) | +----------+ | 41540 | +----------+ 1 row in set (0.66 sec) mysql> explain select count(*) from ytt_pt1_month1 where log_date in ('2020-01-01','2020-01-02','2020-01-03','2020-01-04','2020-01-05','2020-01-06','2020-01-07','2020-01-08','2020-01-09','2020-01-10','2020-01-11','2020-01-12','2020-01-13','2020-01-14','2020-01-15')\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: ytt_pt1_month1 partitions: p0001 type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 848224 filtered: 50.00 Extra: Using where 1 row in set, 1 warning (0.00 sec)
第二种: 对于每年的数据,单独划分12个分区,也就是按照年月联合维度来分区,一共有 144 个分区,每个分区对应具体某一年某一月数据。
添加这个分区稍微麻烦些,克隆表 ytt_pt1_month1 为 ytt_pt1_month2 ,这里写个存储过程来添加分区信息:
DELIMITER $$ USE `ytt`$$ DROP PROCEDURE IF EXISTS `sp_add_partition_ytt_pt1_month2`$$ CREATE DEFINER=`root`@`%` PROCEDURE `sp_add_partition_ytt_pt1_month2`() BEGIN DECLARE i,j INT UNSIGNED DEFAULT 1; DECLARE v_tmp_date DATE; SET @stmt = ''; SET @stmt_begin = 'ALTER TABLE ytt_pt1_month2 PARTITION BY RANGE COLUMNS (log_date)('; SET i = 2010; WHILE i <= 2020 DO SET j = 1; WHILE j <= 12 DO SET v_tmp_date = CONCAT(i,'-01-01'); SET @stmt = CONCAT(@stmt,'PARTITION p',i,'_',LPAD(j,2,"0"),' VALUES LESS THAN (''',DATE_ADD(v_tmp_date,INTERVAL j MONTH),'''),'); SET j = j + 1; END WHILE; SET i = i + 1; END WHILE; SET @stmt_end = 'PARTITION p_max VALUES LESS THAN (maxvalue))'; SET @stmt = CONCAT(@stmt_begin,@stmt,@stmt_end); PREPARE s1 FROM @stmt; EXECUTE s1; DROP PREPARE s1; SET @stmt = NULL; SET @stmt_begin = NULL; SET @stmt_end = NULL; END$$ DELIMITER ; mysql> call sp_add_partition_ytt_pt1_month2; Query OK, 0 rows affected (2 min 20.48 sec)
结果类似这样:
PARTITION p2010_01 VALUES LESS THAN ('2010-02-01') ENGINE = InnoDB, ... PARTITION p2010_12 VALUES LESS THAN ('2011-01-01') ENGINE = InnoDB, PARTITION p2011_01 VALUES LESS THAN ('2011-02-01') ENGINE = InnoDB, ... PARTITION p2011_12 VALUES LESS THAN ('2012-01-01') ENGINE = InnoDB, ... PARTITION p2020_12 VALUES LESS THAN ('2021-01-01') ENGINE = InnoDB, PARTITION p_max VALUES LESS THAN (MAXVALUE) ENGINE = InnoDB)
加好分区后,来观察下刚才那个获取2020年前半个月记录的查询:
mysql> select count(*) from ytt_pt1_month2 where log_date in ('2020-01-01','2020-01-02','2020-01-03','2020-01-04','2020-01-05','2020-01-06','2020-01-07','2020-01-08','2020-01-09','2020-01-10','2020-01-11','2020-01-12','2020-01-13','2020-01-14','2020-01-15'); +----------+ | count(*) | +----------+ | 41540 | +----------+ 1 row in set (0.06 sec) mysql> explain select count(*) from ytt_pt1_month2 where log_date in ('2020-01-01','2020-01-02','2020-01-03','2020-01-04','2020-01-05','2020-01-06','2020-01-07','2020-01-08','2020-01-09','2020-01-10','2020-01-11','2020-01-12','2020-01-13','2020-01-14','2020-01-15')\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: ytt_pt1_month2 partitions: p2020_01 type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 85498 filtered: 50.00 Extra: Using where 1 row in set, 1 warning (0.00 sec)
查询时间为0.06秒,比第一种拆分方法要快10倍。
那是不是说按照年月联合来分区一定比按照单月来分区更加优化?也不一定,如果查询语句过滤条件包含分区的固定月,比如每年的12月份都要查,这时候直接按月来分区肯定要优于按照年月来分区。
按照天为维度过滤比较频繁的查询,以天来拆分最好。比如只想查询2020年1月1日当天的数据,大致 SQL 如下:
select * from ytt_pt1 where log_date = '2020-01-01'
类似按照年月联合维度,写个脚本或者存储过程来添加分区,这里唯一要注意的一点就是 MySQL 分区表数量有限制,最大为8192个,所以如果按照天来分区,存放10年数据,分区数量为3650个,也在限制之内。
修改下之前的存储过程,代码如下:
DELIMITER $$ USE `ytt`$$ DROP PROCEDURE IF EXISTS `sp_add_partition_ytt_pt1_day`$$ CREATE DEFINER=`root`@`%` PROCEDURE `sp_add_partition_ytt_pt1_day`( IN f_year_start YEAR, IN f_year_end YEAR ) BEGIN DECLARE v_days INT UNSIGNED DEFAULT 365; DECLARE v_year DATE DEFAULT '2010-01-01'; DECLARE v_partition_name VARCHAR(64) DEFAULT ''; DECLARE v_log_date DATE; DECLARE i,j INT UNSIGNED DEFAULT 1; SET @stmt = ''; SET @stmt_begin = 'ALTER TABLE ytt_pt1_day PARTITION BY RANGE COLUMNS (log_date)('; SET i = f_year_start; WHILE i <= f_year_end DO SET v_year = CONCAT(i,'-01-01'); SET v_days = DATEDIFF(DATE_ADD(v_year,INTERVAL 1 YEAR),v_year); SET j = 1; WHILE j <= v_days DO SET v_log_date = DATE_ADD(v_year,INTERVAL j DAY); SET v_partition_name = CONCAT('p',i,'_',LPAD(j,3,'0')); SET @stmt = CONCAT(@stmt,'PARTITION ',v_partition_name,' VALUES LESS THAN (''',v_log_date,'''),'); SET j = j + 1; END WHILE; SET i = i + 1; END WHILE; SET @stmt_end = 'PARTITION p_max VALUES LESS THAN (maxvalue))'; SET @stmt = CONCAT(@stmt_begin,@stmt,@stmt_end); PREPARE s1 FROM @stmt; EXECUTE s1; DROP PREPARE s1; SELECT NULL,NULL,NULL INTO @stmt,@stmt_begin,@stmt_end; END$$ DELIMITER ; mysql> CALL sp_add_partition_ytt_pt1_day('2010','2020'); Query OK, 1 row affected (14 min 13.69 sec)
接下来,以天来查询时间一定是最短的,只有0.01秒。
mysql> select count(*) from ytt_pt1_day where log_date = '2020-01-01'; +----------+ | count(*) | +----------+ | 2675 | +----------+ 1 row in set (0.01 sec)
此时这样的查询要是基于年或者月性能肯定不是最优。
mysql> select count(*) from ytt_pt1 where log_date = '2020-01-01'; +----------+ | count(*) | +----------+ | 2675 | +----------+ 1 row in set (0.68 sec) mysql> select count(*) from ytt_pt1_month1 where log_date = '2020-01-01'; +----------+ | count(*) | +----------+ | 2675 | +----------+ 1 row in set (0.87 sec) mysql> select count(*) from ytt_pt1_month2 where log_date = '2020-01-01'; +----------+ | count(*) | +----------+ | 2675 | +----------+ 1 row in set (0.09 sec)
可以看到,此类查询基于其他方法分区时间明显比按天来的长。
本篇主要讲述日常工作中最常用的数据拆分方式:按时间来拆分。时间字段又常按照年,月,日三种不同的维度来具体实现,并且详细讲述了具体的实现方式以及适用场景。
关于 MySQL 的技术内容,你们还有什么想知道的吗?赶紧留言告诉小编吧!