2021SC@SDUSC
mrgcm.c主要实现了AES-GCM加密。
AES加密是对称加密的一种,即加密和解密使用相同的一把密钥,主要是用来取代DES加密算法。
AES加密是一种分组加密技术,即把明文分成一组一组的,每组长度相等,每次加密一组数据,直到加密完整个明文。在这里,AES加密采用的是其标准规范,每组16bytes。
关键代码:
static MR_WORD pack(const MR_BYTE *b) { /* pack bytes into a 32-bit Word */ return ((MR_WORD)b[0]<<24)|((MR_WORD)b[1]<<16)|((MR_WORD)b[2]<<8)|(MR_WORD)b[3]; } static void unpack(MR_WORD a,MR_BYTE *b) { /* unpack bytes from a word */ b[3]=MR_TOBYTE(a); b[2]=MR_TOBYTE(a>>8); b[1]=MR_TOBYTE(a>>16); b[0]=MR_TOBYTE(a>>24); } static void precompute(gcm *g,MR_BYTE *H) { /* precompute small 2k bytes gf2m table of x^n.H */ int i,j; MR_WORD *last,*next,b; for (i=j=0;i<NB;i++,j+=4) g->table[0][i]=pack((MR_BYTE *)&H[j]); for (i=1;i<128;i++) { next=g->table[i]; last=g->table[i-1]; b=0; for (j=0;j<NB;j++) {next[j]=b|(last[j])>>1; b=last[j]<<31;} if (b) next[0]^=0xE1000000; /* irreducible polynomial */ } } static void gf2mul(gcm *g) { /* gf2m mul - Z=H*X mod 2^128 */ int i,j,m,k; MR_WORD P[4]; MR_BYTE b; P[0]=P[1]=P[2]=P[3]=0; j=8; m=0; for (i=0;i<128;i++) { b=(g->stateX[m]>>(--j))&1; if (b) for (k=0;k<NB;k++) P[k]^=g->table[i][k]; if (j==0) { j=8; m++; if (m==16) break; } } for (i=j=0;i<NB;i++,j+=4) unpack(P[i],(MR_BYTE *)&g->stateX[j]); } static void gcm_wrap(gcm *g) { /* Finish off GHASH */ int i,j; MR_WORD F[4]; MR_BYTE L[16]; /* convert lengths from bytes to bits */ F[0]=(g->lenA[0]<<3)|(g->lenA[1]&0xE0000000)>>29; F[1]=g->lenA[1]<<3; F[2]=(g->lenC[0]<<3)|(g->lenC[1]&0xE0000000)>>29; F[3]=g->lenC[1]<<3; for (i=j=0;i<NB;i++,j+=4) unpack(F[i],(MR_BYTE *)&L[j]); for (i=0;i<16;i++) g->stateX[i]^=L[i]; gf2mul(g); } void gcm_init(gcm* g,int nk,char *key,int niv,char *iv) { /* iv size niv is usually 12 bytes (96 bits). AES key size nk can be 16,24 or 32 bytes */ int i; MR_BYTE H[16]; for (i=0;i<16;i++) {H[i]=0; g->stateX[i]=0;} aes_init(&(g->a),MR_ECB,nk,key,iv); aes_ecb_encrypt(&(g->a),H); /* E(K,0) */ precompute(g,H); g->lenA[0]=g->lenC[0]=g->lenA[1]=g->lenC[1]=0; if (niv==12) { for (i=0;i<12;i++) g->a.f[i]=iv[i]; unpack((MR_WORD)1,(MR_BYTE *)&(g->a.f[12])); /* initialise IV */ for (i=0;i<16;i++) g->Y_0[i]=g->a.f[i]; } else { g->status=GCM_ACCEPTING_CIPHER; gcm_add_cipher(g,0,iv,niv,NULL); /* GHASH(H,0,IV) */ gcm_wrap(g); for (i=0;i<16;i++) {g->a.f[i]=g->stateX[i];g->Y_0[i]=g->a.f[i];g->stateX[i]=0;} g->lenA[0]=g->lenC[0]=g->lenA[1]=g->lenC[1]=0; } g->status=GCM_ACCEPTING_HEADER; } BOOL gcm_add_header(gcm* g,char *header,int len) { /* Add some header. Won't be encrypted, but will be authenticated. len is length of header */ int i,j=0; if (g->status!=GCM_ACCEPTING_HEADER) return FALSE; while (j<len) { for (i=0;i<16 && j<len;i++) { g->stateX[i]^=header[j++]; g->lenA[1]++; if (g->lenA[1]==0) g->lenA[0]++; } gf2mul(g); } if (len%16!=0) g->status=GCM_ACCEPTING_CIPHER; return TRUE; } BOOL gcm_add_cipher(gcm *g,int mode,char *plain,int len,char *cipher) { /* Add plaintext to extract ciphertext, or visa versa, depending on mode. len is length of plaintext/ciphertext. Note this file combines GHASH() functionality with encryption/decryption */ int i,j=0; MR_WORD counter; MR_BYTE B[16]; if (g->status==GCM_ACCEPTING_HEADER) g->status=GCM_ACCEPTING_CIPHER; if (g->status!=GCM_ACCEPTING_CIPHER) return FALSE; while (j<len) { if (cipher!=NULL) { counter=pack((MR_BYTE *)&(g->a.f[12])); counter++; unpack(counter,(MR_BYTE *)&(g->a.f[12])); /* increment counter */ for (i=0;i<16;i++) B[i]=g->a.f[i]; aes_ecb_encrypt(&(g->a),B); /* encrypt it */ } for (i=0;i<16 && j<len;i++) { if (cipher==NULL) g->stateX[i]^=plain[j++]; else { if (mode==GCM_ENCRYPTING) cipher[j]=plain[j]^B[i]; g->stateX[i]^=cipher[j]; if (mode==GCM_DECRYPTING) plain[j]=cipher[j]^B[i]; j++; /*if (mode==GCM_ENCRYPTING) cipher[j]=plain[j]^B[i]; if (mode==GCM_DECRYPTING) plain[j]=cipher[j]^B[i]; g->stateX[i]^=cipher[j++]; */ } g->lenC[1]++; if (g->lenC[1]==0) g->lenC[0]++; } gf2mul(g); } if (len%16!=0) g->status=GCM_NOT_ACCEPTING_MORE; return TRUE; } void gcm_finish(gcm *g,char *tag) { /* Finish off GHASH and extract tag (MAC) */ int i; gcm_wrap(g); /* extract tag */ if (tag!=NULL) { aes_ecb_encrypt(&(g->a),g->Y_0); /* E(K,Y0) */ for (i=0;i<16;i++) g->Y_0[i]^=g->stateX[i]; for (i=0;i<16;i++) {tag[i]=g->Y_0[i];g->Y_0[i]=g->stateX[i]=0;} } g->status=GCM_FINISHED; aes_end(&(g->a)); }
一般的流程为:
1 调用gcm_init
2 反复调用gcm_add_header,保证头的长度为16bytes的倍数
3 最后一次调用gcm_add_header,无论长度是否为16bytes的倍数
4 反复调用gcm_add_cipher,保证明文或密码长度为16bytes的倍数
5 最后一次调用gcm_add_cipher,无论长度是否为16bytes的倍数
6 调用gcm_finish提取结果
由于加密只能对固定长度的块进行操作,因此最后一个块需要做特殊处理