Leetcode:https://leetcode-cn.com/problems/sort-an-array/
给定一个整数数组nums,将该数组升序排列。
1.【选择排序】首先找到数组中最小的那个元素,其次,将它和数组中第一个元素交换位置(如果第一个元素就是最小元素那么它和子集交换)。再次,在剩下的元素中找到最小的元素,将它与数组的第二个元素交换位置。如此循环往复。
2.【插入排序】将每个元素插入到其他已经有序的元素中的适当位置。为了给插入的元素腾出空间,需要将其余所有元素在插入之前都向右移动一位。
3.【希尔排序】是数组中任意间隔h的元素都是有序的,对于每个h,用插入排序将h个子数组独立地排序。h从n/3开始递减至1。
4.【归并排序】分治思想,将大数组划分成两个子数组进行排序,通过归并两个子数组来将整个数组排序,原地归并需要将涉及到地元素复制到一个辅助数组中,再将归并的结果放回原数组。
5.【快速排序】将一个数组分成两个子数组,将两部分独立地排序。切分地位置取决于数组的内容。先随意取第一个元素作为切分元素,从数组左端开始向右扫描直到找到一个大于等于它的元素,在从数组右端开始向左扫描找到一个小于等于它的元素,交换这两个元素的位置,直到两个指针相遇,最后和切分元素交换位置即可。
6.【堆排序】在堆的构造阶段中,将原始数组重新组织安排进一个堆中,在下沉排序阶段,从堆中按递减顺序取出所有元素并得到排序结果。
7.【冒泡排序】一边比较一边向后两两交换,将最大值冒泡到最后一位,当不再发生交换时排序停止。
8.【桶排序】实现线性排序,但当元素间值的大小有较大差距时会带来内存空间较大浪费。首先,找出待排序列中的最大元素max,申请内存为max+1的桶(数组)并初始化为0;然后,遍历排序数组,并依次将每个元素作为下标的桶元素值自增1,最后遍历桶元素,并依次将值非0的元素下标值载入排序数列(桶元素>1表明有值大小相等的元素,此时依次将他们载入排序序列),遍历完成,排序序列为有序序列。
9.【二分(折半)插入排序】顺序的把待排序的序列中的各个元素按关键字的大小,通过折半查找插入到已排序的序列的适当位置。
10.【基数排序】十个桶,每次取数的(个十百)…位放入桶中,重复这个过程
#include <iostream> #include <vector> #include <cstring> using namespace std; class Solution{ public: void selectSort(vector<int> &nums) { int n = nums.size(); for (int i = 0; i < n; i++) { int minIndex = i; for (int j = i+1; j < n; j++) { // 找到剩余数组最小值 if (nums[j] < nums[minIndex]) minIndex = j; } // 交换最小值 swap(nums[i], nums[minIndex) int tmp = nums[i]; nums[i] = nums[minIndex]; nums[minIndex] = tmp; } } void insertSort(vector<int> &nums) { int n = nums.size(); for (int i = 1; i < n; i++) { for (int j = i; j > 0 && nums[j] < nums[j-1]; j--) { // 交换元素 swap(nums[j], nums[j-1]) int tmp = nums[j]; nums[j] = nums[j-1]; nums[j-1] = tmp; } } } void shellSort(vector<int> &nums) { int n = nums.size(); int h = 1; while (h < n/3) h = 3*h + 1; while (h >= 1) { // 将数组变为h有序 for (int i = h; i < n; i++) { // 将nums[i] 插入到nums[i-h], nums[i-2h], nums[i-3h]…中 for (int j = i; j >= h && nums[j] < nums[j-h]; j -= h) { // 交换nums[j]和nums[j-h]——swap(nums[j]和nums[j-h]) int tmp = nums[j]; nums[j] = nums[j-h]; nums[j-h] = tmp; } } h = h/3; } } void mergeSort(vector<int> &nums, int left, int right, vector<int> &temp) { if (left == right) return; // 递归出口 // 分 int mid = left + (right - left) / 2; mergeSort(nums, left, mid, temp); mergeSort(nums, mid+1, right, temp); // 治 int i = left, j = mid+1; for (int k = left; k <= right; k++) { // 合并 if ((j > right) || (i <= mid && nums[i] <= nums[j])) { temp[k] = nums[i++]; } else { temp[k] = nums[j++]; } } for (int k = left; k <= right; k++) nums[k] = temp[k]; // 复制 } void quickSort(vector<int> &nums, int left, int right) { if (left+1 >= right) return; int first = left, last = right - 1, key = nums[first]; while (first < last) { // 从右往左找到第一个大于key的值 while (first < last && nums[last] >= key) --last; nums[first] = nums[last]; // 从左往右找到第一个小于key的值 while (first < last && nums[first] <= key) ++first; nums[last] = nums[first]; } nums[first] = key; quickSort(nums, left, first); quickSort(nums, first+1, right); } //堆排序 void adjust(vector<int> &nums, int len, int index){ int left = 2 * index + 1; // index的左子节点 int right = 2 * index + 2;// index的右子节点 int maxIdx = index; if (left < len && nums[left] > nums[maxIdx]) maxIdx = left; if (right < len && nums[right] > nums[maxIdx]) maxIdx = right; if (maxIdx != index) { swap(nums[maxIdx], nums[index]); adjust(nums, len, maxIdx); } } // 堆排序 void heapSort(vector<int> &nums, int size){ for(int i = size / 2 - 1; i >= 0; i--){ adjust(nums, size, i); } for(int i = size - 1; i >= 1; i--){ swap(nums[0], nums[i]); adjust(nums, i, 0); } } void bubbleSort(vector<int> &nums, int n) { bool swapped; for (int i = 1; i < n; i++) { swapped = false; for (int j = 1; j < n-i+1; j++) { if (nums[j] < nums[j-1]) { swap(nums[j], nums[j-1]); swapped = true; } } if (!swapped) break; } } void bucketSort (vector<int>& nums) { int bk[50000 * 2 + 1]; memset(bk, 0, sizeof(bk)); // 清零 for(int i = 0; i < nums.size(); i++){ bk[nums[i] + 50000] += 1; } int ar = 0; for(int i = 0; i < 100001; i++){ for(int j = bk[i]; j > 0; j--){ nums[ar++] = i - 50000; } } } void hInsertSort(vector<int> &nums, int n) { int i,j,low,high,mid; for (i = 0; i < n; i++ ){ int tmp = nums[i]; low = 0; high = i-1; while(low <= high) { mid = low + (high - low) / 2; if(nums[mid] > tmp){ high = mid - 1; }else{ low = mid + 1; } } for(j = i-1; j >= high+1; j--){ nums[j+1] = nums[j]; } nums[high+1] = tmp; } } void radixSort(vector<int> &nums) { int n = nums.size(), max=abs(nums[0]); for(int i = 1; i < n; i++){ if(max < abs(nums[i])) max = abs(nums[i]); } int w = 0; while(max > 0) { max /= 10; w++; } int flag = 1; vector<int> ans(n); for(int i = 0; i < w; i++) { vector<int> bucket(19, 0); for(int j = 0; j < n; j++) { int temp = nums[j] / flag % 10 + 9; bucket[temp]++; } for(int j = 1; j < 19; j++) bucket[j] += bucket[j-1]; for(int j = n-1; j >= 0; j--) { int temp = nums[j] / flag % 10 + 9; ans[--bucket[temp]] = nums[j]; } nums.swap(ans); flag *= 10; } } vector<int> sortArray(vector<int>& nums) { int n = nums.size(); // 1.选择排序 // selectSort(nums); // 2.插入排序 // insertSort(nums); // 3.希尔排序 // shellSort(nums); // 4.原地归并排序 // vector<int> temp(n); // mergeSort(nums, 0, n-1, temp); // 5.快速排序 // quickSort(nums, 0, n); // 6.堆排序 // heapSort(nums, n); // 7.冒泡排序 // bubbleSort(nums, n); // 8.桶排序 // bucketSort(nums); // 9.折半插入排序 // hInsertSort(nums, n); // 10.基数排序 radixSort(nums); return nums; } }; int main() { vector<int> nums = {2, 1, 5, 3, 4}; Solution sol; // 排序 sol.sortArray(nums); for (const int & val: nums) { cout << val << " "; } return 0; }
leetcode:https://leetcode-cn.com/problems/kth-largest-element-in-an-array/
给定整数数组 nums和整数 k,请返回数组中第 k个最大的元素。
【快速旋转】快速旋转一般用于求解k-th Element问题,只需要找到第k大的枢(pivot)即可,不需要对其左右再进行排序。与快速排序一样,一般需要先打乱数组,注意只需要快排数组大小
#include <iostream> #include <vector> using namespace std; class Solution { public: int findKthLargest(vector<int>& nums, int k) { int len = nums.size()-1; int value = quickSort(nums, len-k, 0, nums.size()-1); return value; } int quickSelection(vector<int>& nums, int k, int left, int right) { int first = left, last = right, key = nums[first]; while (first < last) { while (first < last && nums[last] >= key) --last; nums[first] = nums[first]; while (first < last && nums[first] <= key) ++first; nums[last] = nums[first]; } nums[first] = key; if (first == k) { return nums[k]; } else if (first < k) { return quickSelection(nums, k, first+1, right); } else { return quickSelection(nums, k, left, first-1); } } }; int main(){ vector<int> nums = {3, 2, 1, 5, 6, 4}; int k = 2; Solution sol; cout << sol.findKthLargest(nums, k) << endl; return 0; }