说起垃圾收集(Garbage Collection,GC),大部分人都把这项技术当做Java语言的伴生产物。事实上,GC的历史比Java久远,1960年诞生于MIT的Lisp是第一门真正使用内存动态分配和垃圾收集技术的语言。当Lisp还在胚胎时期时,人们就在思考GC需要完成的3件事情:
经过半个多世纪的发展,目前内存的动态分配与内存回收技术已经相当成熟,一切看起来都进入了“自动化”时代,那为什么我们还要去了解GC和内存分配呢?答案很简单:当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就需要对这些“自动化”的技术实施必要的监控和调节。
回到我们熟悉的Java语言。上一章介绍了Java内存运行时区域的各个部分,其中程序计数器、虚拟机栈、本地方法栈3个区域随线程而生,随线程而灭; 栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作。每一个栈帧中分配多少内存基本上是在类结构确定下来时就已知的因此这几个区域的内存分配和回收都具备确定性,在这几个区域内就不需要过多考虑回收的问题,因为方法结束或者线程结束时,内存自然就跟随着回收
而Java堆和方法区则不一样,一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个分支需要的内存也可能不一样,我们只有在程序处于运行期间时才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,垃圾收集器所关注的是这部分内存,本章后续讨论中的“内存”分配与回收也仅指这一部分内存。
了。
在堆里面存放着Java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还“存活”着,哪些已经“死去”(即不可能再被任何途径使用的对象)。
/** *testGC()方法执行后,objA和objB会不会被GC呢? *@author zzm */ public class ReferenceCountingGC{ public Object instance=null; private static final int_1MB=1024*1024; /** *这个成员属性的唯一意义就是占点内存,以便能在GC日志中看清楚是否被回收过 */ private byte[]bigSize=new byte[2*_1MB]; public static void testGC(){ ReferenceCountingGC objA=new ReferenceCountingGC(); ReferenceCountingGC objB=new ReferenceCountingGC(); objA.instance=objB; objB.instance=objA; objA=null; objB=null; //假设在这行发生GC,objA和objB是否能被回收? System.gc(); } }
无论是通过引用计数算法判断对象的引用数量,还是通过可达性分析算法判断对象的引用链是否可达,判定对象是否存活都与“引用”有关。
在JDK 1.2以前,Java中的引用的定义很传统:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用。这种定义很纯粹,但是太过狭隘,一个对象在这种定义下只有被引用或者没有被引用两种状态,对于如何描述一些“食之无味,弃之可惜”的对象就显得无能为力。
我们希望能描述这样一类对象:当内存空间还足够时,则能保留在内存之中;如果内存空间在进行垃圾收集后还是非常紧张,则可以抛弃这些对象。很多系统的缓存功能都符合这样的应用场景。
在JDK 1.2之后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、**虚引用(Phantom Reference)**4种,这4种引用强度依次逐渐减弱。
SoftReference
类来实现软引用。-弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2之后,提供了WeakReference类来实现弱引用。
-虚引用也称为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2之后,提供了PhantomReference类来实现虚引用。
即使在可达性分析算法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:
class FinalizeEscapeGC{ public static FinalizeEscapeGC SAVE_HOOK=null; public void isAlive(){ System.out.println("yes,i am still alive:)"); } @Override protected void finalize()throws Throwable{ // finalize() super.finalize(); System.out.println("finalize mehtod executed!"); FinalizeEscapeGC.SAVE_HOOK=this; } public static void main(String[]args)throws Throwable{ SAVE_HOOK=new FinalizeEscapeGC(); //对象第一次成功拯救自己 SAVE_HOOK=null; System.gc(); //因为finalize方法优先级很低,所以暂停0.5秒以等待它 Thread.sleep(500); if(SAVE_HOOK!=null){ SAVE_HOOK.isAlive(); }else{ System.out.println("no,i am dead:("); } //下面这段代码与上面的完全相同,但是这次自救却失败了 SAVE_HOOK=null; System.gc(); //因为finalize方法优先级很低,所以暂停0.5秒以等待它 Thread.sleep(500); if(SAVE_HOOK!=null){ SAVE_HOOK.isAlive(); }else{ System.out.println("no,i am dead:("); } } }