Spark SQL是Spark用于结构化数据(structured data)处理的Spark模块。
与基本的Spark RDD API不同,Spark SQL的抽象数据类型为Spark提供了关于数据结构和正在执行的计算的更多信息。
在内部,Spark SQL使用这些额外的信息去做一些额外的优化,有多种方式与Spark SQL进行交互,比如: SQL和DatasetAPI。
当计算结果的时候,使用的是相同的执行引擎,不依赖你正在使用哪种API或者语言。这种统一也就意味着开发者可以很容易在不同的API之间进行切换,这些API提供了最自然的方式来表达给定的转换。
我们已经学习了Hive,它是将Hive SQL转换成 MapReduce然后提交到集群上执行,大大简化了编写 MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!
Spark SQL它提供了2个编程抽象,类似Spark Core中的RDD
无缝的整合了 SQL 查询和 Spark 编程
使用相同的方式连接不同的数据源
在已有的仓库上直接运行 SQL 或者 HiveQL
通过 JDBC 或者 ODBC 来连接
在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得Spark SQL得以洞察更多的结构信息,从而对藏于DataFrame背后的数据源以及作用于DataFrame之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观RDD,由于无从得知所存数据元素的具体内部结构,Spark Core只能在stage层面进行简单、通用的流水线优化。
同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从 API 易用性的角度上看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API 要更加友好,门槛更低。
上图直观地体现了DataFrame和RDD的区别。
左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。
DataFrame是为数据提供了Schema的视图。可以把它当做数据库中的一张表来对待
DataFrame也是懒执行的,但性能上比RDD要高,主要原因:优化的执行计划,即查询计划通过Spark catalyst optimiser进行优化。比如下面一个例子:
为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。
如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter下推到 join下方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。
DataSet是分布式数据集合。DataSet是Spark 1.6中添加的一个新抽象,是DataFrame的一个扩展。它提供了RDD的优势(强类型,使用强大的lambda函数的能力)以及Spark SQL优化执行引擎的优点。DataSet也可以使用功能性的转换(操作map,flatMap,filter等等)。
本章重点学习如何使用 DataFrame和DataSet进行编程,已经他们之间的关系和转换,关于具体的SQL书写不是本章的重点。
在老的版本中,SparkSQL提供两种SQL查询起始点:一个叫SQLContext,用于Spark自己提供的SQL查询;一个叫HiveContext,用于连接Hive的查询。
SparkSession是Spark最新的SQL查询起始点,实质上是SQLContext和HiveContext的组合,所以在SQLContex和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了sparkContext,所以计算实际上是由sparkContext完成的。当我们使用 spark-shell 的时候, spark 会自动的创建一个叫做spark的SparkSession, 就像我们以前可以自动获取到一个sc来表示SparkContext
Spark SQL的DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者生成SQL表达式。DataFrame API 既有transformation操作也有action操作,DataFrame的转换从本质上来说更具有关系, 而 DataSet API 提供了更加函数式的 API
在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:通过Spark的数据源进行创建;从一个存在的RDD进行转换;还可以从Hive Table进行查询返回。
scala> spark.read.
csv format jdbc json load option options orc parquet schema table text textFile
scala> val df = spark.read.json("/opt/module/spark-local/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
注意:如果从内存中获取数据,spark可以知道数据类型具体是什么,如果是数字,默认作为Int处理;但是从文件中读取的数字,不能确定是什么类型,所以用bigint接收,可以和Long类型转换,但是和Int不能进行转换
scala> df.show
+---+--------+
|age| name|
+---+--------+
| 18|qiaofeng|
| 19| duanyu|
| 20| xuzhu|
+---+--------+
2.5节我们专门讨论
3.4节我们专门讨论
SQL语法风格是指我们查询数据的时候使用SQL语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助
scala> val df = spark.read.json("/opt/module/spark-local/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
scala> df.createOrReplaceTempView("people")
scala> val sqlDF = spark.sql("SELECT * FROM people")
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
scala> sqlDF.show
+---+--------+
|age| name|
+---+--------+
| 18|qiaofeng|
| 19| duanyu|
| 20| xuzhu|
+---+--------+
注意:普通临时表是Session范围内的,如果想应用范围内有效,可以使用全局临时表。使用全局临时表时需要全路径访问,如:global_temp.people
scala> df.createGlobalTempView("people")
scala> spark.sql("SELECT * FROM global_temp.people").show()
+---+--------+
|age| name|
+---+--------+
| 18|qiaofeng|
| 19| duanyu|
| 20| xuzhu|
+---+--------+
scala> spark.newSession().sql("SELECT * FROM global_temp.people").show()
+---+--------+
|age| name|
+---+--------+
| 18|qiaofeng|
| 19| duanyu|
| 20| xuzhu|
+---+--------+
DataFrame提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据,可以在 Scala, Java, Python 和 R 中使用 DSL,使用 DSL 语法风格不必去创建临时视图了
scala> val df = spark.read.json("/opt/module/spark-local /people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
scala> df.printSchema
root
|-- age: Long (nullable = true)
|-- name: string (nullable = true)
scala> df.select("name").show()
+--------+
| name|
+--------+
|qiaofeng|
| duanyu|
| xuzhu|
+--------+
scala> df.select("*").show
+--------+---------+
| name |age|
+--------+---------+
|qiaofeng| 18|
| duanyu| 19|
| xuzhu| 20|
+--------+---------+
注意:涉及到运算的时候, 每列都必须使用$
scala> df.select($"name",$"age" + 1).show
+--------+---------+
| name|(age + 1)|
+--------+---------+
|qiaofeng| 19|
| duanyu| 20|
| xuzhu| 21|
+--------+---------+
scala> df.filter($"age">19).show
+---+-----+
|age| name|
+---+-----+
| 20|xuzhu|
+---+-----+
scala> df.groupBy("age").count.show
+---+-----+
|age|count|
+---+-----+
| 19| 1|
| 18| 1|
| 20| 1|
+---+-----+
注意:如果需要RDD与DF或者DS之间操作,那么都需要引入 import spark.implicits._ (spark不是包名,而是sparkSession对象的名称,所以必须先创建SparkSession对象再导入. implicits是一个内部object)
前置条件
qiaofeng,18
xuzhu,19
duanyu,20
scala> import spark.implicits._
import spark.implicits._
scala> val peopleRDD = sc.textFile("/opt/module/spark-local/people.txt")
输出
peopleRDD: org.apache.spark.rdd.RDD[String] = /opt/module/spark-local /people.txt MapPartitionsRDD[3] at textFile at <console>:27
scala> peopleRDD.map{x=> val fields=x.split(",");(fields(0),fields(1).trim.toInt)}.toDF("name","age").show
+--------+---+
| name|age|
+--------+---+
|qiaofeng| 18|
| xuzhu| 19|
| duanyu| 20|
+--------+---+
scala> case class People(name:String,age:Int)
scala> peopleRDD.map{x=> var fields=x.split(",");People(fields(0),fields(1).toInt)}.toDF.show
+--------+---+
| name|age|
+--------+---+
|qiaofeng| 18|
| xuzhu| 19|
| duanyu| 20|
+--------+---+
package day05
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
object DataFrameDemo2 {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder()
.master("local[*]")
.appName("Word Count")
.getOrCreate()
val sc: SparkContext = spark.sparkContext
val rdd: RDD[(String, Int)] = sc.parallelize(Array(("lisi", 10), ("zs", 20), ("zhiling", 40)))
// 映射出来一个 RDD[Row], 因为 DataFrame其实就是 DataSet[Row]
val rowRdd: RDD[Row] = rdd.map(x => Row(x._1, x._2))
// 创建 StructType 类型
val types = StructType(Array(StructField("name", StringType), StructField("age", IntegerType)))
val df: DataFrame = spark.createDataFrame(rowRdd, types)
df.show
}
}
直接调用rdd即可
scala> val df = spark.read.json("/opt/module/spark-local/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint,name: string]
scala> val dfToRDD = df.rdd
dfToRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[19] at rdd at <console>:29
scala> dfToRDD.collect
res3: Array[org.apache.spark.sql.Row] = Array([18,qiaofeng], [19,duanyu], [20,xuzhu])
DataSet是具有强类型的数据集合,需要提供对应的类型信息。
scala> case class Person(name: String, age: Long)
defined class Person
scala> val caseClassDS = Seq(Person("wangyuyan",2)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: Long]
scala> caseClassDS.show
+---------+---+
| name|age|
+---------+---+
|wangyuyan| 2|
+---------+---+
scala> val ds = Seq(1,2,3,4,5,6).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]
scala> ds.show
+-----+
|value|
+-----+
| 1|
| 2|
| 3|
| 4|
| 5|
| 6|
+-----+
注意:在实际使用的时候,很少用到把序列转换成DataSet,更多是通过RDD来得到DataSet
SparkSQL能够自动将包含有样例类的RDD转换成DataSet,样例类定义了table的结构,样例类属性通过反射变成了表的列名。样例类可以包含诸如Seq或者Array等复杂的结构。
scala> val peopleRDD = sc.textFile("/opt/module/spark-local/people.txt")
peopleRDD: org.apache.spark.rdd.RDD[String] = /opt/module/spark-local/people.txt MapPartitionsRDD[19] at textFile at <console>:24
scala> case class Person(name:String,age:Int)
defined class Person
scala> peopleRDD.map(line => {val fields = line.split(",");Person(fields(0),fields(1). toInt)}).toDS
res0: org.apache.spark.sql.Dataset[Person] = [name: string, age: Long]
调用rdd方法即可。
scala> val DS = Seq(Person("zhangcuishan", 32)).toDS()
DS: org.apache.spark.sql.Dataset[Person] = [name: string, age: Long]
scala> DS.rdd
res1: org.apache.spark.rdd.RDD[Person] = MapPartitionsRDD[6] at rdd at <console>:28
scala> val df = spark.read.json("/opt/module/spark-local/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
scala> case class Person(name: String,age: Long)
defined class Person
scala> df.as[Person]
res5: org.apache.spark.sql.Dataset[Person] = [age: bigint, name: string]
这种方法就是在给出每一行的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便。在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用。
scala> case class Person(name: String,age: Long)
defined class Person
scala> val ds = Seq(Person("zhangwuji",32)).toDS()
ds: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
scala> var df = ds.toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: bigint]
scala> df.show
+---------+---+
| name|age|
+---------+---+
|zhangwuji| 32|
+---------+---+
在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:
RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)
如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的Spark版本中,DataSet有可能会逐步取代RDD和DataFrame成为唯一的API接口。
type DataFrame = Dataset[Row]
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.12</artifactId>
<version>3.0.0</version>
</dependency>
object SparkSQL01_Demo {
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
//创建SparkSession对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
//RDD=>DataFrame=>DataSet转换需要引入隐式转换规则,否则无法转换
//spark不是包名,是上下文环境对象名
import spark.implicits._
//读取json文件 创建DataFrame {"username": "lisi","age": 18}
val df: DataFrame = spark.read.json("D:\\dev\\workspace\\spark-bak\\spark-bak-00\\input\\test.json")
//df.show()
//SQL风格语法
df.createOrReplaceTempView("user")
//spark.sql("select avg(age) from user").show
//DSL风格语法
//df.select("username","age").show()
//df.select(df("age") + 1).show
//df.select(df.col("username"),df.col("age") + 1)
//*****RDD=>DataFrame=>DataSet*****
//RDD
val rdd1: RDD[(Int, String, Int)] = spark.sparkContext.makeRDD(List((1,"qiaofeng",30),(2,"xuzhu",28),(3,"duanyu",20)))
//DataFrame
val df1: DataFrame = rdd1.toDF("id","name","age")
//df1.show()
//DateSet
val ds1: Dataset[User] = df1.as[User]
//ds1.show()
//*****DataSet=>DataFrame=>RDD*****
//DataFrame
val df2: DataFrame = ds1.toDF()
//RDD 返回的RDD类型为Row,里面提供的getXXX方法可以获取字段值,类似jdbc处理结果集,但是索引从0开始
val rdd2: RDD[Row] = df2.rdd
//rdd2.foreach(a=>println(a.getString(1)))
//*****RDD=>DataSe*****
rdd1.map{
case (id,name,age)=>User(id,name,age)
}.toDS()
//*****DataSet=>=>RDD*****
ds1.rdd
//释放资源
spark.stop()
}
}
case class User(id:Int,name:String,age:Int)
输入一行,返回一个结果。在Shell窗口中可以通过spark.udf功能用户可以自定义函数。
scala> val df = spark.read.json("/opt/module/spark-local/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
scala> df.show
+---+--------+
|age| name|
+---+--------+
| 18|qiaofeng|
| 19| duanyu|
| 20| xuzhu|
+---+--------+
scala> spark.udf.register("addName",(x:String)=> "Name:"+x)
res9: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,StringType,Some(List(StringType)))
scala> df.createOrReplaceTempView("people")
scala> spark.sql("Select addName(name),age from people").show()
+-----------------+---+
|UDF:addName(name)|age|
+-----------------+---+
| Name:qiaofeng| 18|
| Name:duanyu| 19|
| Name:xuzhu| 20|
+-----------------+---+
输入多行,返回一行。强类型的Dataset和弱类型的DataFrame都提供了相关的聚合函数, 如 count(),avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数。通过继承UserDefinedAggregateFunction来实现用户自定义聚合函数。
需求:实现求平均年龄
object Spark00_TestAgeAvg {
def main(args: Array[String]): Unit = {
//1.创建SparkConf并设置App名称
val conf: SparkConf = new SparkConf().setAppName("SparkCoreTest").setMaster("local[*]")
//2.创建SparkContext,该对象是提交Spark App的入口
val sc: SparkContext = new SparkContext(conf)
val res: (Int, Int) = sc.makeRDD(List(("zhangsan", 20), ("lisi", 30), ("wangw", 40))).map {
case (name, age) => {
(age, 1)
}
}.reduce {
(t1, t2) => {
(t1._1 + t2._1, t1._2 + t2._2)
}
}
println(res._1/res._2)
// 关闭连接
sc.stop()
}
}
object Spark01_TestSer {
def main(args: Array[String]): Unit = {
//1.创建SparkConf并设置App名称
val conf: SparkConf = new SparkConf().setAppName("SparkCoreTest").setMaster("local[*]")
//2.创建SparkContext,该对象是提交Spark App的入口
val sc: SparkContext = new SparkContext(conf)
var sumAc = new MyAC
sc.register(sumAc)
sc.makeRDD(List(("zhangsan",20),("lisi",30),("wangw",40))).foreach{
case (name,age)=>{
sumAc.add(age)
}
}
println(sumAc.value)
// 关闭连接
sc.stop()
}
}
class MyAC extends AccumulatorV2[Int,Int]{
var sum:Int = 0
var count:Int = 0
override def isZero: Boolean = {
return sum ==0 && count == 0
}
override def copy(): AccumulatorV2[Int, Int] = {
val newMyAc = new MyAC
newMyAc.sum = this.sum
newMyAc.count = this.count
newMyAc
}
override def reset(): Unit = {
sum =0
count = 0
}
override def add(v: Int): Unit = {
sum += v
count += 1
}
override def merge(other: AccumulatorV2[Int, Int]): Unit = {
other match {
case o:MyAC=>{
sum += o.sum
count += o.count
}
case _=>
}
}
override def value: Int = sum/count
}
object Spark00_TestAgeAvg {
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
//创建SparkSession对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
//创建聚合函数
var myAverage = new MyAveragUDAF
//在spark中注册聚合函数
spark.udf.register("avgAge",myAverage)
//读取数据 {"username": "zhangsan","age": 20}
val df: DataFrame = spark.read.json("D:\\dev\\workspace\\spark-bak\\spark-bak-00\\input\\test.json")
//创建临时视图
df.createOrReplaceTempView("user")
//使用自定义函数查询
spark.sql("select avgAge(age) from user").show()
}
}
/*
定义类继承UserDefinedAggregateFunction,并重写其中方法
*/
class MyAveragUDAF extends UserDefinedAggregateFunction {
// 聚合函数输入参数的数据类型
def inputSchema: StructType = StructType(Array(StructField("age",IntegerType)))
// 聚合函数缓冲区中值的数据类型(age,count)
def bufferSchema: StructType = {
StructType(Array(StructField("sum",LongType),StructField("count",LongType)))
}
// 函数返回值的数据类型
def dataType: DataType = DoubleType
// 稳定性:对于相同的输入是否一直返回相同的输出。
def deterministic: Boolean = true
// 函数缓冲区初始化
def initialize(buffer: MutableAggregationBuffer): Unit = {
// 存年龄的总和
buffer(0) = 0L
// 存年龄的个数
buffer(1) = 0L
}
// 更新缓冲区中的数据
def update(buffer: MutableAggregationBuffer,input: Row): Unit = {
if (!input.isNullAt(0)) {
buffer(0) = buffer.getLong(0) + input.getInt(0)
buffer(1) = buffer.getLong(1) + 1
}
}
// 合并缓冲区
def merge(buffer1: MutableAggregationBuffer,buffer2: Row): Unit = {
buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
}
// 计算最终结果
def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1)
}
object Spark04_TestAgeAvg {
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
//创建SparkSession对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
//读取数据 {"username": "zhangsan","age": 20}
val df: DataFrame = spark.read.json("D:\\dev\\workspace\\spark-bak\\spark-bak-00\\input\\test.json")
//封装为DataSet
val ds: Dataset[User01] = df.as[User01]
//创建聚合函数
var myAgeUdtf1 = new MyAveragUDAF1
//将聚合函数转换为查询的列
val col: TypedColumn[User01, Double] = myAgeUdtf1.toColumn
//查询
ds.select(col).show()
// 关闭连接
spark.stop()
}
}
//输入数据类型
case class User01(username:String,age:Long)
//缓存类型
case class AgeBuffer(var sum:Long,var count:Long)
/**
* 定义类继承org.apache.spark.sql.expressions.Aggregator
* 重写类中的方法
*/
class MyAveragUDAF1 extends Aggregator[User01,AgeBuffer,Double]{
override def zero: AgeBuffer = {
AgeBuffer(0L,0L)
}
override def reduce(b: AgeBuffer, a: User01): AgeBuffer = {
b.sum = b.sum + a.age
b.count = b.count + 1
b
}
override def merge(b1: AgeBuffer, b2: AgeBuffer): AgeBuffer = {
b1.sum = b1.sum + b2.sum
b1.count = b1.count + b2.count
b1
}
override def finish(buff: AgeBuffer): Double = {
buff.sum.toDouble/buff.count
}
//DataSet默认额编解码器,用于序列化,固定写法
//自定义类型就是produce 自带类型根据类型选择
override def bufferEncoder: Encoder[AgeBuffer] = {
Encoders.product
}
override def outputEncoder: Encoder[Double] = {
Encoders.scalaDouble
}
}
输出结果:
+--------------------------------------------------+
|MyAveragUDAF1(com.atguigu.spark.core.day05.User01)|
+--------------------------------------------------+
| 18.0|
+--------------------------------------------------+
输入一行,返回多行(hive);
SparkSQL中没有UDTF,spark中用flatMap即可实现该功能
scala> spark.read.
csv format jdbc json load option options orc parquet schema table text textFile
注意:加载数据的相关参数需写到上述方法中,如:textFile需传入加载数据的路径,jdbc需传入JDBC相关参数。
例如:直接加载Json数据
scala> spark.read.json("/opt/module/spark-local/people.json").show
+---+--------+
|age| name|
+---+--------+
| 18|qiaofeng|
| 19| duanyu|
| 20| xuzhu|
scala> spark.read.format("…")[.option("…")].load("…")
用法详解:
例如:使用format指定加载Json类型数据
scala> spark.read.format("json").load ("/opt/module/spark-local/people.json").show
+---+--------+
|age| name|
+---+--------+
| 18|qiaofeng|
| 19| duanyu|
| 20| xuzhu|
我们前面都是使用read API 先把文件加载到 DataFrame然后再查询,其实,我们也可以直接在文件上进行查询
scala> spark.sql("select * from json.`/opt/module/spark-local/people.json`").show
+---+--------+
|age| name|
+---+--------+
| 18|qiaofeng|
| 19| duanyu|
| 20| xuzhu|
+---+--------+|
说明:
json表示文件的格式. 后面的文件具体路径需要用反引号括起来.
scala> df.write.
csv jdbc json orc parquet textFile… …
注意:保存数据的相关参数需写到上述方法中。如:textFile需传入加载数据的路径,jdbc需传入JDBC相关参数。
例如:直接将df中数据保存到指定目录
//默认保存格式为parquet
scala> df.write.save("/opt/module/spark-local/output")
//可以指定为保存格式,直接保存,不需要再调用save了
scala> df.write.json("/opt/module/spark-local/output")
scala> df.write.format("…")[.option("…")].save("…")
用法详解:
保存操作可以使用 SaveMode, 用来指明如何处理数据,使用mode()方法来设置。
有一点很重要: 这些 SaveMode 都是没有加锁的, 也不是原子操作。
SaveMode是一个枚举类,其中的常量包括:
Scala/Java | Any Language | Meaning |
SaveMode.ErrorIfExists(default) | "error"(default) | 如果文件已经存在则抛出异常 |
SaveMode.Append | "append" | 如果文件已经存在则追加 |
SaveMode.Overwrite | "overwrite" | 如果文件已经存在则覆盖 |
SaveMode.Ignore | "ignore" | 如果文件已经存在则忽略 |
例如:使用指定format指定保存类型进行保存
df.write.mode("append").json("/opt/module/spark-local/output")
Spark SQL的默认数据源为Parquet格式。数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作,不需要使用format。修改配置项spark.sql.sources.default,可修改默认数据源格式。
val df = spark.read.load("/opt/module/spark-local/examples/src/main/resources/users.parquet").show
+------+--------------+----------------+
| name|favorite_color|favorite_numbers|
+------+--------------+----------------+
|Alyssa| null| [3, 9, 15, 20]|
| Ben| red| []|
+------+--------------+----------------+
df: Unit = ()
scala> var df = spark.read.json("/opt/module/spark-local/people.json")
//保存为parquet格式
scala> df.write.mode("append").save("/opt/module/spark-local/output")
Spark SQL 能够自动推测 JSON数据集的结构,并将它加载为一个Dataset[Row]. 可以通过SparkSession.read.json()去加载一个 一个JSON 文件。
注意:这个JSON文件不是一个传统的JSON文件,每一行都得是一个JSON串。格式如下:
{"name":"Michael"}
{"name":"Andy","age":30}
{"name":"Justin","age":19}
import spark.implicits._
val path = "/opt/module/spark-local/people.json"
val peopleDF = spark.read.json(path)
peopleDF.createOrReplaceTempView("people")
val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
teenagerNamesDF.show()
+------+
| name|
+------+
|Justin|
+------+
Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。
如果使用spark-shell操作,可在启动shell时指定相关的数据库驱动路径或者将相关的数据库驱动放到spark的类路径下。
bin/spark-shell
--jars mysql-connector-java-5.1.27-bin.jar
我们这里只演示在Idea中通过JDBC对Mysql进行操作
导入依赖
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.27</version>
</dependency>
object SparkSQL02_Datasource {
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
//创建SparkSession对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
//方式1:通用的load方法读取
spark.read.format("jdbc")
.option("url", "jdbc:mysql://hadoop202:3306/test")
.option("driver", "com.mysql.jdbc.Driver")
.option("user", "root")
.option("password", "123456")
.option("dbtable", "user")
.load().show
//方式2:通用的load方法读取 参数另一种形式
spark.read.format("jdbc")
.options(Map("url"->"jdbc:mysql://hadoop202:3306/test?user=root&password=123456",
"dbtable"->"user","driver"->"com.mysql.jdbc.Driver")).load().show
//方式3:使用jdbc方法读取
val props: Properties = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "123456")
val df: DataFrame = spark.read.jdbc("jdbc:mysql://hadoop202:3306/test", "user", props)
df.show
//释放资源
spark.stop()
}
}
object SparkSQL03_Datasource {
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
//创建SparkSession对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
val rdd: RDD[User2] = spark.sparkContext.makeRDD(List(User2("lisi", 20), User2("zs", 30)))
val ds: Dataset[User2] = rdd.toDS
//方式1:通用的方式 format指定写出类型
ds.write
.format("jdbc")
.option("url", "jdbc:mysql://hadoop202:3306/test")
.option("user", "root")
.option("password", "123456")
.option("dbtable", "user")
.mode(SaveMode.Append)
.save()
//方式2:通过jdbc方法
val props: Properties = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "123456")
ds.write.mode(SaveMode.Append).jdbc("jdbc:mysql://hadoop202:3306/test", "user", props)
//释放资源
spark.stop()
}
}
case class User2(name: String, age: Long)
Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL编译时可以包含 Hive 支持,也可以不包含。
包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译Spark SQL时引入Hive支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编译时添加了 Hive 支持。
若要把 Spark SQL 连接到一个部署好的 Hive 上,你必须把 hive-site.xml 复制到 Spark的配置文件目录中($SPARK_HOME/conf)。即使没有部署好 Hive,Spark SQL 也可以运行,需要注意的是,如果你没有部署好Hive,Spark SQL 会在当前的工作目录中创建出自己的 Hive 元数据仓库,叫作 metastore_db。此外,对于使用部署好的Hive,如果你尝试使用 HiveQL 中的 CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的 hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。
spark-shell默认是Hive支持的;代码中是默认不支持的,需要手动指定(加一个参数即可)。
如果使用 Spark 内嵌的 Hive, 则什么都不用做, 直接使用即可.
Hive 的元数据存储在 derby 中, 仓库地址:$SPARK_HOME/spark-warehouse
scala> spark.sql("show tables").show
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
+--------+---------+-----------+
scala> spark.sql("create table aa(id int)")
19/02/09 18:36:10 WARN HiveMetaStore: Location: file:/opt/module/spark-local/spark-warehouse/aa specified for non-external table:aa
res2: org.apache.spark.sql.DataFrame = []
scala> spark.sql("show tables").show
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
| default| aa| false|
+--------+---------+-----------+
向表中加载本地数据数据
scala> spark.sql("load data local inpath './ids.txt' into table aa")
res8: org.apache.spark.sql.DataFrame = []
scala> spark.sql("select * from aa").show
+---+
| id|
+---+
|100|
|101|
|102|
|103|
|104|
|105|
|106|
+---+
然而在实际使用中, 几乎没有任何人会使用内置的 Hive
如果Spark要接管Hive外部已经部署好的Hive,需要通过以下几个步骤。
启动 spark-shell
scala> spark.sql("show tables").show
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
| default| emp| false|
+--------+---------+-----------+
scala> spark.sql("select * from emp").show
19/02/09 19:40:28 WARN LazyStruct: Extra bytes detected at the end of the row! Ignoring similar problems.
+-----+-------+---------+----+----------+------+------+------+
|empno| ename| job| mgr| hiredate| sal| comm|deptno|
+-----+-------+---------+----+----------+------+------+------+
| 7369| SMITH| CLERK|7902|1980-12-17| 800.0| null| 20|
| 7499| ALLEN| SALESMAN|7698| 1981-2-20|1600.0| 300.0| 30|
| 7521| WARD| SALESMAN|7698| 1981-2-22|1250.0| 500.0| 30|
| 7566| JONES| MANAGER|7839| 1981-4-2|2975.0| null| 20|
| 7654| MARTIN| SALESMAN|7698| 1981-9-28|1250.0|1400.0| 30|
| 7698| BLAKE| MANAGER|7839| 1981-5-1|2850.0| null| 30|
| 7782| CLARK| MANAGER|7839| 1981-6-9|2450.0| null| 10|
| 7788| SCOTT| ANALYST|7566| 1987-4-19|3000.0| null| 20|
| 7839| KING|PRESIDENT|null|1981-11-17|5000.0| null| 10|
| 7844| TURNER| SALESMAN|7698| 1981-9-8|1500.0| 0.0| 30|
| 7876| ADAMS| CLERK|7788| 1987-5-23|1100.0| null| 20|
| 7900| JAMES| CLERK|7698| 1981-12-3| 950.0| null| 30|
| 7902| FORD| ANALYST|7566| 1981-12-3|3000.0| null| 20|
| 7934| MILLER| CLERK|7782| 1982-1-23|1300.0| null| 10|
| 7944|zhiling| CLERK|7782| 1982-1-23|1300.0| null| 50|
+-----+-------+---------+----+----------+------+------+------+
Spark SQLCLI可以很方便的在本地运行Hive元数据服务以及从命令行执行查询任务。在Spark目录下执行如下命令启动Spark SQ LCLI,直接执行SQL语句,类似Hive窗口。
bin/spark-sql
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>1.2.1</version>
</dependency>
object SparkSQL08_Hive{
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
val spark: SparkSession = SparkSession
.builder()
.enableHiveSupport()
.master("local[*]")
.appName("SQLTest")
.getOrCreate()
spark.sql("show tables").show()
//释放资源
spark.stop()
}
}
我们这次Spark-sql操作所有的数据均来自 Hive,首先在Hive中创建表,并导入数据。一共有3张表: 1张用户行为表,1张城市表,1 张产品表
CREATE TABLE `user_visit_action`(
`date` string,
`user_id` bigint,
`session_id` string,
`page_id` bigint,
`action_time` string,
`search_keyword` string,
`click_category_id` bigint,
`click_product_id` bigint,
`order_category_ids` string,
`order_product_ids` string,
`pay_category_ids` string,
`pay_product_ids` string,
`city_id` bigint)
row format delimited fields terminated by '\t';
load data local inpath '/opt/module/data/user_visit_action.txt' into table user_visit_action;
CREATE TABLE `product_info`(
`product_id` bigint,
`product_name` string,
`extend_info` string)
row format delimited fields terminated by '\t';
load data local inpath '/opt/module/data/product_info.txt' into table product_info;
CREATE TABLE `city_info`(
`city_id` bigint,
`city_name` string,
`area` string)
row format delimited fields terminated by '\t';
load data local inpath '/opt/module/data/city_info.txt' into table city_info;
这里的热门商品是从点击量的维度来看的,计算各个区域前三大热门商品,并备注上每个商品在主要城市中的分布比例,超过两个城市用其他显示。
例如:
地区 | 商品名称 | 点击次数 | 城市备注 |
华北 | 商品A | 100000 | 北京21.2%,天津13.2%,其他65.6% |
华北 | 商品P | 80200 | 北京63.0%,太原10%,其他27.0% |
华北 | 商品M | 40000 | 北京63.0%,太原10%,其他27.0% |
东北 | 商品J | 92000 | 大连28%,辽宁17.0%,其他 55.0% |
class AreaClickUDAF extends UserDefinedAggregateFunction {
// 输入数据的类型: 北京 String
override def inputSchema: StructType = {
StructType(StructField("city_name", StringType) :: Nil)
// StructType(Array(StructField("city_name", StringType)))
}
// 缓存的数据的类型: 北京->1000, 天津->5000 Map, 总的点击量 1000/?
override def bufferSchema: StructType = {
// MapType(StringType, LongType) 还需要标注 map的key的类型和value的类型
StructType(StructField("city_count", MapType(StringType, LongType)) :: StructField("total_count", LongType) :: Nil)
}
// 输出的数据类型 "北京21.2%,天津13.2%,其他65.6%" String
override def dataType: DataType = StringType
// 相同的输入是否应用有相同的输出.
override def deterministic: Boolean = true
// 给存储数据初始化
override def initialize(buffer: MutableAggregationBuffer): Unit = {
//初始化map缓存
buffer(0) = Map[String, Long]()
// 初始化总的点击量
buffer(1) = 0L
}
// 分区内合并 Map[城市名, 点击量]
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
// 首先拿到城市名, 然后把城市名作为key去查看map中是否存在, 如果存在就把对应的值 +1, 如果不存在, 则直接0+1
val cityName = input.getString(0)
// val map: collection.Map[String, Long] = buffer.getMap[String, Long](0)
val map: Map[String, Long] = buffer.getAs[Map[String, Long]](0)
buffer(0) = map + (cityName -> (map.getOrElse(cityName, 0L) + 1L))
// 碰到一个城市, 则总的点击量要+1
buffer(1) = buffer.getLong(1) + 1L
}
// 分区间的合并
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
val map1 = buffer1.getAs[Map[String, Long]](0)
val map2 = buffer2.getAs[Map[String, Long]](0)
// 把map1的键值对与map2中的累积, 最后赋值给buffer1
buffer1(0) = map1.foldLeft(map2) {
case (map, (k, v)) =>
map + (k -> (map.getOrElse(k, 0L) + v))
}
buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
}
// 最终的输出. "北京21.2%,天津13.2%,其他65.6%"
override def evaluate(buffer: Row): Any = {
val cityCountMap = buffer.getAs[Map[String, Long]](0)
val totalCount = buffer.getLong(1)
var citysRatio: List[CityRemark] = cityCountMap.toList.sortBy(-_._2).take(2).map {
case (cityName, count) => {
CityRemark(cityName, count.toDouble / totalCount)
}
}
// 如果城市的个数超过2才显示其他
if (cityCountMap.size > 2) {
citysRatio = citysRatio :+ CityRemark("其他", citysRatio.foldLeft(1D)(_ - _.cityRatio))
}
citysRatio.mkString(", ")
}
}
case class CityRemark(cityName: String, cityRatio: Double) {
val formatter = new DecimalFormat("0.00%")
override def toString: String = s"$cityName:${formatter.format(cityRatio)}"
}
object SparkSQL04_TopN {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession
.builder()
.master("local[2]")
.appName("AreaClickApp")
.enableHiveSupport()
.getOrCreate()
spark.sql("use sparkpractice")
// 0 注册自定义聚合函数
spark.udf.register("city_remark", new AreaClickUDAF)
// 1. 查询出所有的点击记录,并和城市表产品表做内连接
spark.sql(
"""
|select
| c.*,
| v.click_product_id,
| p.product_name
|from user_visit_action v join city_info c join product_info p on v.city_id=c.city_id and v.click_product_id=p.product_id
|where click_product_id>-1
""".stripMargin).createOrReplaceTempView("t1")
// 2. 计算每个区域, 每个产品的点击量
spark.sql(
"""
|select
| t1.area,
| t1.product_name,
| count(*) click_count,
| city_remark(t1.city_name)
|from t1
|group by t1.area, t1.product_name
""".stripMargin).createOrReplaceTempView("t2")
// 3. 对每个区域内产品的点击量进行倒序排列
spark.sql(
"""
|select
| *,
| rank() over(partition by t2.area order by t2.click_count desc) rank
|from t2
""".stripMargin).createOrReplaceTempView("t3")
// 4. 每个区域取top3
spark.sql(
"""
|select
| *
|from t3
|where rank<=3
""".stripMargin).show
//释放资源
spark.stop()
}
}