本文主要是介绍GNN手写mnist数据集Pytorch实现,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
GAN网络手写数据集Pytorch实现
import argparse
import os
import numpy as np
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch
#--------------------参数配置---------------------------
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decy of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image samples")
opt = parser.parse_args()
print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
#--------------------1.准备数据集---------------------------
os.makedirs("images", exist_ok=True)
# Configure data loader
os.makedirs("../data/mnist", exist_ok=True)
# 图像预处理
transform=transforms.Compose([
transforms.Resize(opt.img_size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
mnist = datasets.MNIST(
root="../data/mnist",
train=True,
transform=transform,
download=True
)
data_loader = torch.utils.data.DataLoader(
dataset=mnist,
batch_size=opt.batch_size,
shuffle=True,
)
# ---------------------2. 模型搭建--------------------------
# 生成器
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*block(opt.latent_dim, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh() # -1to1
)
def forward(self, x):
img = self.model(x)
img = img.view(img.size(0), *img_shape)
return img
# 辨别器
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid()
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
# -----------------------3. 损失函数和优化器-----------------------
adversarial_loss = torch.nn.BCELoss()
generator = Generator()
discriminator = Discriminator()
cuda = True if torch.cuda.is_available() else False
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# -----------------4. 训练------------------------------
for epoch in range(opt.n_epochs):
for i, (imgs, _) in enumerate(data_loader):
# ground truths
valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)
#Configure imput
real_imgs = Variable(imgs.type(Tensor))
# Sample noise as generator input
z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))
# Generate a batch of images
gen_images = generator(z)
# ----------------------
# Train Discriminator
# ----------------------
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(real_imgs), valid)
fake_loss = adversarial_loss(discriminator(gen_images.detach()), fake) # 冻结生成器梯度
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# -------------------------
# Train Generator
# -------------------------
optimizer_G.zero_grad()
# Loss measures generator's ability to fool the discriminator
g_loss = adversarial_loss(discriminator(gen_images), valid)
g_loss.backward()
optimizer_G.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(data_loader), d_loss.item(), g_loss.item())
)
batches_done = epoch * len(data_loader) + i
if batches_done % opt.sample_interval == 0:
save_image(gen_images.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)
torch.save(Generator.state_dict(), 'images/generator.pth')
torch.save(Discriminator.state_dict(), 'images/discriminator.pth')
这篇关于GNN手写mnist数据集Pytorch实现的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!