自己写图像锐化函数:
#include <iostream> #include <opencv2/core.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> using namespace std; using namespace cv; void Sharpen(const Mat& myImage, Mat& Result); int main() { Mat srcImage = imread("1.png"); //判断图像是否加载成功 if(srcImage.data) cout << "图像加载成功!" << endl << endl; else { cout << "图像加载失败!" << endl << endl; return -1; } namedWindow("srcImage", WINDOW_AUTOSIZE); imshow("srcImage", srcImage); Mat dstImage; dstImage.create(srcImage.size(), srcImage.type()); Sharpen(srcImage, dstImage); namedWindow("dstImage",WINDOW_AUTOSIZE); imshow("dstImage",dstImage); waitKey(0); return 0; } void Sharpen(const Mat& myImage, Mat& Result) { CV_Assert(myImage.depth() == CV_8U); //判断函数CV_Assert const int nChannels = myImage.channels(); for(int j = 1; j < myImage.rows - 1; ++j) { const uchar* precious = myImage.ptr<uchar>(j - 1); //当前像素上一行指针 const uchar* current = myImage.ptr<uchar>(j); //当前像素行指针 const uchar* next = myImage.ptr<uchar>(j + 1); //当前像素下一行指针 uchar* output = Result.ptr<uchar>(j); //利用公式和上下左右四个像素对当前像素值进行处理 for(int i = nChannels; i < nChannels * (myImage.cols - 1); ++i) { // 0, -1 ,0; -1, 5, -1; 0, -1, 0; *output++ = saturate_cast<uchar>(5 * current[i] -current[i-nChannels]-current[i+nChannels] -precious[i]-next[i]); } } Result.row(0).setTo(Scalar(0)); //设置第一行所有元素值为0 Result.row(Result.rows-1).setTo(Scalar(0)); //设置最后一行所有元素值为0 Result.col(0).setTo(Scalar(0)); //设置第一列所有元素值为0 Result.col(Result.cols-1).setTo(Scalar(0)); //设置最后一列所有元素值为0 }
上面代码是以卷积核为
[
0
−
1
0
−
1
5
−
1
0
−
1
0
]
\begin{bmatrix} 0&-1&0\\ -1&5&-1 \\ 0&-1&0 \end{bmatrix}
⎣⎡0−10−15−10−10⎦⎤为例的锐化
,结果图就是轻微的锐化,这里不做展示。
cv::filter2D()
举例: 直接使用边缘检测的拉普拉斯算子API函数,与自己定义拉普拉斯算子核使用cv::filter2D()
的效果对比:
#include <iostream> #include <string> #include <vector> #include "opencv2/highgui/highgui.hpp" #include "opencv2/opencv.hpp" // g++ test.cpp `pkg-config opencv --libs --cflags` -std=c++11 -pthread -o test using namespace std; using namespace cv; const int Kenel_s = 3; //卷积核大小 int main() { //读入图片 Mat src, dst, dst_L; src = imread("1.png", 0); // copyMakeBorder(src, src, Kenel_s - 1, Kenel_s - 1, Kenel_s - 1, Kenel_s - // 1, BORDER_CONSTANT, Scalar(0)); //填充图像 imshow("Image of src", src); dst = src.clone(); cv::Laplacian(dst, dst, dst.depth()); imshow("Image of Laplacian API", dst); // cv::Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0); // cv::Mat kernel = (Mat_<char>(3, 3) << -1, -1, -1, -1, 8, -1, -1, -1, -1); cv::Mat kernel = (Mat_<char>(3, 3) << 1, 1, 1, 1, -8, 1, 1, 1, 1); cv::filter2D(src, src, CV_8UC3, kernel); imshow("Image of Laplacian 2", src); while (waitKey(0) != 'q') { }; return 0; }
origin:
API:
cv::filter2D():