这节主要是介绍如何导入Mesh模型
运用插件assimp-vc140-mt.dll,搜索项目中的这个文件,并复制一份到运行目录:
git-learn-open-gl-master\bin\3.model_loading ,然后就能跑起来了
// load models // ----------- Model ourModel(FileSystem::getPath("resources/objects/backpack/backpack.obj"));
while(true)中
// 空间坐标变换 // render the loaded model glm::mat4 model = glm::mat4(1.0f); model = glm::translate(model, glm::vec3(0.0f, 0.0f, 0.0f)); // translate it down so it's at the center of the scene model = glm::scale(model, glm::vec3(1.0f, 1.0f, 1.0f)); // it's a bit too big for our scene, so scale it down ourShader.setMat4("model", model); //进行显示 ourModel.Draw(ourShader);
分析Mesh.h:
#ifndef MESH_H #define MESH_H #include <glad/glad.h> // holds all OpenGL type declarations #include <glm/glm.hpp> #include <glm/gtc/matrix_transform.hpp> #include <learnopengl/shader.h> #include <string> #include <vector> using namespace std; #define MAX_BONE_INFLUENCE 4 //这个Vertex格式,是加载模型每个节点的通用格式 struct Vertex { // position glm::vec3 Position; // normal glm::vec3 Normal; // texCoords glm::vec2 TexCoords; // tangent glm::vec3 Tangent; // bitangent glm::vec3 Bitangent; //bone indexes which will influence this vertex int m_BoneIDs[MAX_BONE_INFLUENCE]; //weights from each bone float m_Weights[MAX_BONE_INFLUENCE]; }; struct Texture { unsigned int id; string type; string path; }; class Mesh { public: // mesh Data vector<Vertex> vertices; vector<unsigned int> indices; vector<Texture> textures; unsigned int VAO; // constructor 初始化,其中就读取Vertex格式的数据 Mesh(vector<Vertex> vertices, vector<unsigned int> indices, vector<Texture> textures) { this->vertices = vertices; this->indices = indices; this->textures = textures; // now that we have all the required data, set the vertex buffers and its attribute pointers. setupMesh(); } // render the mesh 渲染Mesh,并根据图片的多少来遍历渲染 void Draw(Shader &shader) { // bind appropriate textures unsigned int diffuseNr = 1; unsigned int specularNr = 1; unsigned int normalNr = 1; unsigned int heightNr = 1; for(unsigned int i = 0; i < textures.size(); i++) { glActiveTexture(GL_TEXTURE0 + i); // active proper texture unit before binding // retrieve texture number (the N in diffuse_textureN) string number; string name = textures[i].type; if(name == "texture_diffuse") number = std::to_string(diffuseNr++); else if(name == "texture_specular") number = std::to_string(specularNr++); // transfer unsigned int to string else if(name == "texture_normal") number = std::to_string(normalNr++); // transfer unsigned int to string else if(name == "texture_height") number = std::to_string(heightNr++); // transfer unsigned int to string // now set the sampler to the correct texture unit glUniform1i(glGetUniformLocation(shader.ID, (name + number).c_str()), i); // and finally bind the texture glBindTexture(GL_TEXTURE_2D, textures[i].id); } // draw mesh glBindVertexArray(VAO); glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0); glBindVertexArray(0); // always good practice to set everything back to defaults once configured. glActiveTexture(GL_TEXTURE0); } private: // render data unsigned int VBO, EBO; // initializes all the buffer objects/arrays //初始化数据,主要是一些VBO VAO EBO的初始化 void setupMesh() { // create buffers/arrays glGenVertexArrays(1, &VAO); glGenBuffers(1, &VBO); glGenBuffers(1, &EBO); glBindVertexArray(VAO); // load data into vertex buffers glBindBuffer(GL_ARRAY_BUFFER, VBO); // A great thing about structs is that their memory layout is sequential for all its items. // The effect is that we can simply pass a pointer to the struct and it translates perfectly to a glm::vec3/2 array which // again translates to 3/2 floats which translates to a byte array. glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW); // set the vertex attribute pointers // vertex Positions glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0); // vertex normals glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Normal)); // vertex texture coords glEnableVertexAttribArray(2); glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, TexCoords)); // vertex tangent glEnableVertexAttribArray(3); glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Tangent)); // vertex bitangent glEnableVertexAttribArray(4); glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Bitangent)); // ids glEnableVertexAttribArray(5); glVertexAttribIPointer(5, 4, GL_INT, sizeof(Vertex), (void*)offsetof(Vertex, m_BoneIDs)); // weights glEnableVertexAttribArray(6); glVertexAttribPointer(6, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, m_Weights)); glBindVertexArray(0); } }; #endif
分析Model.h
#ifndef MODEL_H #define MODEL_H #include <glad/glad.h> #include <glm/glm.hpp> #include <glm/gtc/matrix_transform.hpp> #include <stb_image.h> #include <assimp/Importer.hpp> #include <assimp/scene.h> #include <assimp/postprocess.h> #include <learnopengl/mesh.h> #include <learnopengl/shader.h> #include <string> #include <fstream> #include <sstream> #include <iostream> #include <map> #include <vector> using namespace std; unsigned int TextureFromFile(const char *path, const string &directory, bool gamma = false); class Model { public: // model data vector<Texture> textures_loaded; // stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once. vector<Mesh> meshes; string directory; bool gammaCorrection; // constructor, expects a filepath to a 3D model. //初始化,参数为一个路径或者Model模型 Model(string const &path, bool gamma = false) : gammaCorrection(gamma) { //运用一些lib方法解析model loadModel(path); } // draws the model, and thus all its meshes void Draw(Shader &shader) { for(unsigned int i = 0; i < meshes.size(); i++) //对每个Mesh调用其绘制方法 meshes[i].Draw(shader); } private: // loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector. //使用lib方法,对model进行加载 void loadModel(string const &path) { // read file via ASSIMP Assimp::Importer importer; const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_GenSmoothNormals | aiProcess_FlipUVs | aiProcess_CalcTangentSpace); // check for errors if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero { cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl; return; } // retrieve the directory path of the filepath directory = path.substr(0, path.find_last_of('/')); // process ASSIMP's root node recursively processNode(scene->mRootNode, scene); } //具体的遍历所有Node // processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any). void processNode(aiNode *node, const aiScene *scene) { // process each mesh located at the current node for(unsigned int i = 0; i < node->mNumMeshes; i++) { // the node object only contains indices to index the actual objects in the scene. // the scene contains all the data, node is just to keep stuff organized (like relations between nodes). aiMesh* mesh = scene->mMeshes[node->mMeshes[i]]; meshes.push_back(processMesh(mesh, scene)); } // after we've processed all of the meshes (if any) we then recursively process each of the children nodes for(unsigned int i = 0; i < node->mNumChildren; i++) { processNode(node->mChildren[i], scene); } } //解析每一个Mesh,解析成贴图顶点等信息 Mesh processMesh(aiMesh *mesh, const aiScene *scene) { // data to fill vector<Vertex> vertices; vector<unsigned int> indices; vector<Texture> textures; // walk through each of the mesh's vertices for(unsigned int i = 0; i < mesh->mNumVertices; i++) { Vertex vertex; glm::vec3 vector; // we declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first. // positions vector.x = mesh->mVertices[i].x; vector.y = mesh->mVertices[i].y; vector.z = mesh->mVertices[i].z; vertex.Position = vector; // normals if (mesh->HasNormals()) { vector.x = mesh->mNormals[i].x; vector.y = mesh->mNormals[i].y; vector.z = mesh->mNormals[i].z; vertex.Normal = vector; } // texture coordinates if(mesh->mTextureCoords[0]) // does the mesh contain texture coordinates? { glm::vec2 vec; // a vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't // use models where a vertex can have multiple texture coordinates so we always take the first set (0). vec.x = mesh->mTextureCoords[0][i].x; vec.y = mesh->mTextureCoords[0][i].y; vertex.TexCoords = vec; // tangent vector.x = mesh->mTangents[i].x; vector.y = mesh->mTangents[i].y; vector.z = mesh->mTangents[i].z; vertex.Tangent = vector; // bitangent vector.x = mesh->mBitangents[i].x; vector.y = mesh->mBitangents[i].y; vector.z = mesh->mBitangents[i].z; vertex.Bitangent = vector; } else vertex.TexCoords = glm::vec2(0.0f, 0.0f); vertices.push_back(vertex); } // now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices. for(unsigned int i = 0; i < mesh->mNumFaces; i++) { aiFace face = mesh->mFaces[i]; // retrieve all indices of the face and store them in the indices vector for(unsigned int j = 0; j < face.mNumIndices; j++) indices.push_back(face.mIndices[j]); } // process materials aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex]; // we assume a convention for sampler names in the shaders. Each diffuse texture should be named // as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER. // Same applies to other texture as the following list summarizes: // diffuse: texture_diffuseN // specular: texture_specularN // normal: texture_normalN // 1. diffuse maps vector<Texture> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse"); textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end()); // 2. specular maps vector<Texture> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular"); textures.insert(textures.end(), specularMaps.begin(), specularMaps.end()); // 3. normal maps std::vector<Texture> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal"); textures.insert(textures.end(), normalMaps.begin(), normalMaps.end()); // 4. height maps std::vector<Texture> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height"); textures.insert(textures.end(), heightMaps.begin(), heightMaps.end()); // return a mesh object created from the extracted mesh data return Mesh(vertices, indices, textures); } // checks all material textures of a given type and loads the textures if they're not loaded yet. // the required info is returned as a Texture struct. vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type, string typeName) { vector<Texture> textures; for(unsigned int i = 0; i < mat->GetTextureCount(type); i++) { aiString str; mat->GetTexture(type, i, &str); // check if texture was loaded before and if so, continue to next iteration: skip loading a new texture bool skip = false; for(unsigned int j = 0; j < textures_loaded.size(); j++) { if(std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0) { textures.push_back(textures_loaded[j]); skip = true; // a texture with the same filepath has already been loaded, continue to next one. (optimization) break; } } if(!skip) { // if texture hasn't been loaded already, load it Texture texture; texture.id = TextureFromFile(str.C_Str(), this->directory); texture.type = typeName; texture.path = str.C_Str(); textures.push_back(texture); textures_loaded.push_back(texture); // store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures. } } return textures; } }; //读取某个图片文件 unsigned int TextureFromFile(const char *path, const string &directory, bool gamma) { string filename = string(path); filename = directory + '/' + filename; unsigned int textureID; glGenTextures(1, &textureID); int width, height, nrComponents; unsigned char *data = stbi_load(filename.c_str(), &width, &height, &nrComponents, 0); if (data) { GLenum format; if (nrComponents == 1) format = GL_RED; else if (nrComponents == 3) format = GL_RGB; else if (nrComponents == 4) format = GL_RGBA; glBindTexture(GL_TEXTURE_2D, textureID); glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data); glGenerateMipmap(GL_TEXTURE_2D); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); stbi_image_free(data); } else { std::cout << "Texture failed to load at path: " << path << std::endl; stbi_image_free(data); } return textureID; } #endif