Python教程

Python OpenCV模板识别并标注

本文主要是介绍Python OpenCV模板识别并标注,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

转载请注明出处,联系我: t39q@163.com
本人热衷于数据库技术及算法的研究,志同道合之士, 欢迎探讨
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import cv2
import numpy as np
import math

img = cv2.imread('13.jpg') 
img3 = cv2.imread('13.jpg') 
img2 = cv2.imread('13.jpg') 

template = cv2.imread('template5.jpg')

img = cv2.GaussianBlur(img, (3, 3),0)
template = cv2.GaussianBlur(template, (3, 3),0)

#cv2.imshow('img', img)
#cv2.imshow('template', template)

h1,w1 = img.shape[:2]
h2,w2 = template.shape[:2]

#print(img.shape)
#print(template.shape)

#CV_TM_CCORR_NORMED  TM_SQDIFF TM_SQDIFF_NORMED
res = cv2.matchTemplate(img,template,cv2.TM_SQDIFF_NORMED)
#print(res.shape)
#print(res)

#print("(%d, %d)"%(h1-h2+1,w1-w2+1))
min_val,max_val,min_loc,max_loc = cv2.minMaxLoc(res)
print('Min:'+str(min_val))
#print(max_val)
#print(res[277][689])
print(min_loc)
#cv2.imshow('res', res)

#threshold = 35123456   
threshold = 0.13 
loc = np.where( res <= threshold)

n=0

for pt in zip(*loc[::-1]):
    cv2.rectangle(img2, pt, (pt[0] + w2, pt[1] + h2), (0,0,255), 1)
    n=n+1
    #print(pt)
#cv2.imshow('img2',img2)


#print ('n:'+str(n))
top_left = min_loc
bottom_right = (top_left[0]+w2,top_left[1]+h2)
img_copy = img.copy()
cv2.rectangle(img2,top_left,bottom_right,(0,0,255),2)
#cv2.imwrite('img_red.jpg',img2)
#cv2.imshow('img2',img2)

HSV = cv2.cvtColor(img2, cv2.COLOR_BGR2HSV)
H, S, V = cv2.split(HSV)

LowerBlue = np.array([0, 43, 46])
UpperBlue = np.array([10, 255, 255])

mask = cv2.inRange(HSV, LowerBlue, UpperBlue)
Things = cv2.bitwise_and(img, img, mask=mask)

erode_hsv = cv2.erode(Things, None, iterations=0)
ThingsGray=cv2.cvtColor(erode_hsv,cv2.COLOR_RGB2GRAY)
cnts = cv2.findContours(ThingsGray.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
#cv2.drawContours(img3,cnts,-1,(0,0,255),3)

n=0
center=np.arange(12).reshape((6, 2))
for i in range(len(cnts)):
    #rect = cv2.minAreaRect(cnts[i])
    rect = cv2.minAreaRect(cnts[i])
    (x, y), radius = cv2.minEnclosingCircle(cnts[i])
    radius = int(radius)
    #print (rect[1][0]*rect[1][1])
    box = cv2.boxPoints(rect)
    if rect[1][0]*rect[1][1]>2000:
       cv2.drawContours(img3, [np.int0(box)], -1, (0, 0, 255), 6)
       center[n][0] = x
       center[n][1] = y
       n=n+1
if n==6 :
   cv2.line(img3, (center[5][0],center[5][1]), (center[4][0],center[4][1]), (0, 0, 255), 6, 8)
   cv2.line(img3, (center[5][0],center[5][1]), (center[3][0],center[3][1]), (0, 0, 255), 6, 8)
   cv2.line(img3, (center[5][0],center[5][1]), (center[2][0],center[2][1]), (0, 0, 255), 6, 8)
   cv2.line(img3, (center[5][0],center[5][1]), (center[1][0],center[1][1]), (0, 0, 255), 6, 8)
   cv2.line(img3, (center[5][0],center[5][1]), (center[0][0],center[0][1]), (0, 0, 255), 6, 8)
   
   line1_length=math.sqrt(math.pow((center[5][1]-center[4][1]),2)+ \
                          math.pow((center[5][0]-center[4][0]),2))
   line2_length=math.sqrt(math.pow((center[5][1]-center[1][1]),2)+ \
                          math.pow((center[5][0]-center[1][0]),2))
   line3_length=math.sqrt(math.pow((center[5][1]-center[2][1]),2)+ \
                          math.pow((center[5][0]-center[2][0]),2))
   line4_length=math.sqrt(math.pow((center[5][1]-center[0][1]),2)+ \
                          math.pow((center[5][0]-center[0][0]),2))
   line5_length=math.sqrt(math.pow((center[5][1]-center[3][1]),2)+ \
                          math.pow((center[5][0]-center[3][0]),2))
   
   print ('length is:')
   print(line1_length,line2_length,line3_length,line4_length,line5_length)
   
   print('Ration:')
   print(line2_length/line1_length*100)
   print(line3_length/line1_length*100)
   print(line4_length/line1_length*100)
   print(line5_length/line1_length*100)
   
   print ('angle is:')     
   k1=(center[5][1]-center[4][1])/(center[5][0]-center[4][0]) 
   k2=(center[5][1]-center[1][1])/(center[5][0]-center[1][0]) 
   Cobb =math.fabs(np.arctan((k1-k2)/(float(1 + k1*k2)))*180/np.pi)
   print (Cobb)
   
   #k1=(center[5][1]-center[4][1])/(center[5][0]-center[4][0]) 
   k2=(center[5][1]-center[2][1])/(center[5][0]-center[2][0]) 
   Cobb =math.fabs(np.arctan((k1-k2)/(float(1 + k1*k2)))*180/np.pi)
   print (Cobb)
   
   #k1=(center[5][1]-center[4][1])/(center[5][0]-center[4][0]) 
   k2=(center[5][1]-center[0][1])/(center[5][0]-center[0][0]) 
   Cobb =math.fabs(np.arctan((k1-k2)/(float(1 + k1*k2)))*180/np.pi)
   print (Cobb)
   
   #k1=(center[5][1]-center[4][1])/(center[5][0]-center[4][0]) 
   k2=(center[5][1]-center[3][1])/(center[5][0]-center[3][0]) 
   Cobb =math.fabs(np.arctan((k1-k2)/(float(1 + k1*k2)))*180/np.pi)
   print (Cobb)
else:
   print ('NG')

cv2.imshow('img3',img3)
print ('count is:') 
print ('n:'+str(n))
print (center)



cv2.waitKey(0)
cv2.destroyAllWindows()























这篇关于Python OpenCV模板识别并标注的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!