题目:使用分治算法实现两个大整数的相乘
实现算法:
public class Main { //核心算法 public static long big_integer_multiplication(long num1, long num2) { //递归终止条件 if(num1 < 10 || num2 < 10) return num1 * num2; // 计算拆分长度 int size1 = String.valueOf(num1).length(); int size2 = String.valueOf(num2).length(); int half_N = Math.max(size1, size2) / 2; // 拆分为a, b, c, d long A = Long.valueOf(String.valueOf(num1).substring(0, size1 - half_N)); long B = Long.valueOf(String.valueOf(num1).substring(size1 - half_N)); long C = Long.valueOf(String.valueOf(num2).substring(0, size2 - half_N)); long D = Long.valueOf(String.valueOf(num2).substring(size2 - half_N)); // 计算z2, z0, z1, 此处的乘法使用递归 long z2 = big_integer_multiplication(A, C); long z0 = big_integer_multiplication(B, D); long z1 = big_integer_multiplication((A + B), (C + D)) - z0 - z2; return (long)(z2 * Math.pow(10, (2*half_N)) + z1 * Math.pow(10, half_N) + z0); } // 测试 public static void main(String[] args) { System.out.println(big_integer_multiplication(1234,4567)); //True System.out.println("------------------------------------"); System.out.println(big_integer_multiplication(123456789,987654321)); //True System.out.println("------------------------------------"); System.out.println(big_integer_multiplication(12345,1234)); //True } }
参考资料: