本文主要是介绍Flink处理--异步IO,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
async
import com.alibaba.fastjson.JSONObject;
import org.apache.commons.io.IOUtils;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.async.ResultFuture;
import org.apache.flink.streaming.api.functions.async.RichAsyncFunction;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.client.config.RequestConfig;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.nio.client.CloseableHttpAsyncClient;
import org.apache.http.impl.nio.client.HttpAsyncClients;
import org.apache.http.util.EntityUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import pers.aishuang.flink.streaming.entity.ItcastDataPartObj;
import pers.aishuang.flink.streaming.entity.VehicleLocationModel;
import pers.aishuang.flink.streaming.utils.GaoDeMapUtils;
import pers.aishuang.flink.streaming.utils.GeoHashUtil;
import pers.aishuang.flink.streaming.utils.RedisUtil;
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Collections;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.Future;
import java.util.function.Consumer;
import java.util.function.Supplier;
/**
* 通过异步请求获取指定经纬度的位置信息,从高德API获取位置数据
* 将指定vin某个时间的位置数据保存到redis中
*/
public class AsyncHttpQueryFunction extends RichAsyncFunction<ItcastDataPartObj, ItcastDataPartObj> {
//创建日志打印器
private static final Logger logger = LoggerFactory.getLogger(AsyncHttpQueryFunction.class);
//实现读取异步请求的客户端 (可关闭的http异步请求客户端)
private static CloseableHttpAsyncClient httpAsyncClient = null;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
//设置HttpAsyncClient配置
RequestConfig config = RequestConfig.custom()
//-- 设置连接超时时间
.setConnectTimeout(5000)
//-- 设置socket超时时间
.setSocketTimeout(3000)
.build();
//初始化异步Http的client
httpAsyncClient = HttpAsyncClients
.custom()
//设置最大连接数量
.setMaxConnTotal(5)
.setDefaultRequestConfig(config)
.build();
//开启异步http的客户端
httpAsyncClient.start();
}
//实现读取高德API获取位置数据并将位置数据保存到redis中并返回ItcastDataPartObj
@Override
public void asyncInvoke(ItcastDataPartObj input, ResultFuture<ItcastDataPartObj> resultFuture) throws Exception {
//1. 获取当前车辆的经纬度
Double lng = input.getLng();
Double lat = input.getLat();
//2. 通过GaoDeMapUtils工具类根据参数获取请求的url
String urlByLonLat = GaoDeMapUtils.getUrlByLonLat(lng,lat);
//3. 创建http get请求对象
HttpGet httpGet = new HttpGet(urlByLonLat);
//4. 使用刚创建的http异步客户端执行 http请求对象
Future<HttpResponse> future = httpAsyncClient.execute(httpGet, null);
//5. 从执行完成的future中获取数据,返回ItcastDataPartObj对象
CompletableFuture<ItcastDataPartObj> completableFuture = CompletableFuture.supplyAsync(new Supplier<ItcastDataPartObj>(){
//重写get方法
//成功时,Redis写入了数据,ItcastDataPartObj的相关字段数据也补齐了。
//失败时,什么也不做,原样返回
@Override
public ItcastDataPartObj get() {
try {
String country = null;
String province = null;
String city = null;
String district = null;
String address = null;
//再开个线程自己去拿
HttpResponse httpResponse = future.get();
//使用future获取到返回的值
if(httpResponse.getStatusLine().getStatusCode() == 200 ){
HttpEntity entity = httpResponse.getEntity();
InputStream contentStream = entity.getContent();
//①通过IO流工具类直接生成字符串
String content1 = IOUtils.toString(contentStream);
//②通过将InputStream转换成输入Reader (转换流:字节流->字符流)
InputStreamReader inputStreamReader = new InputStreamReader(contentStream);
//--再读取数据流到buffer缓冲区(字符流->高效字符流)
BufferedReader bufferedReader = new BufferedReader(inputStreamReader);
final int bufferSize = 1024;
final char[] buffer = new char[bufferSize];
final StringBuilder out = new StringBuilder();
int len;
while ((len = bufferedReader.read(buffer)) != -1){
out.append(new String(buffer,0,len));
}
inputStreamReader.close();
bufferedReader.close();
String content2 = out.toString();
//③Entity工具类
String content3 = EntityUtils.toString(entity);
//----------------------------
//将json字符串转换成对象然后读取出来国家,省、市、区、address
JSONObject jsonObject = JSONObject.parseObject(content3);
JSONObject regeocode = jsonObject.getJSONObject("regeocode");
if(regeocode !=null && regeocode.size() > 0 ){
address = regeocode.getString("formatted_address");
JSONObject addressComponent = regeocode.getJSONObject("addressComponent");
if(addressComponent != null && addressComponent.size() > 0) {
country = addressComponent.getString("country");
province = addressComponent.getString("province");
city = addressComponent.getString("city");
district = addressComponent.getString("district");
//将其封装为VehicleLocationModel 并写入到redis
VehicleLocationModel vehicleLocationModel = new VehicleLocationModel(
country,
province,
city,
district,
address,
lat,
lng
);
//获取geohash值作为存储到redis的key
String geoHash = GeoHashUtil.encode(lat,lng);
RedisUtil.set(
Bytes.toBytes(geoHash), //字节数组 (二进制数据)
vehicleLocationModel.toJsonStringArr()//字节数组(二进制数据)
);
//将当前车辆的位置信息赋值
input.setCountry(country);
input.setProvince(province);
input.setCity(city);
input.setDistrict(district);
input.setAddress(address);
}else{
logger.error("当前解析出来的地理信息为空,请检查");
}
}else {
logger.error("当前解析出来的对象为空,请检查!");
}
}else {
logger.error("当前url请求返回reponse错误!");
}
} catch (Exception e) {
e.printStackTrace();
}
return input;
}
});
//6. 从future的thenAccept
completableFuture.thenAccept(new Consumer<ItcastDataPartObj>() {
//重写accept方法,使用集合中只放一个对象
@Override
public void accept(ItcastDataPartObj itcastDataPartObj) {
resultFuture.complete(Collections.singleton(itcastDataPartObj));
}
});
}
//超时了怎么处理(如果当前请求超时,打印输出超时日志或告警信息)
@Override
public void timeout(ItcastDataPartObj input, ResultFuture<ItcastDataPartObj> resultFuture) throws Exception {
//超时时间,打印输出异步请求的超时警告
System.out.println("当前异步请求超时!");
}
//关闭当前的http异步请求客户端
@Override
public void close() throws Exception {
if(httpAsyncClient.isRunning()) httpAsyncClient.close();
}
}
实例
import org.apache.commons.lang.StringUtils;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.*;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import pers.aishuang.flink.streaming.async.AsyncHttpQueryFunction;
import pers.aishuang.flink.streaming.entity.ItcastDataPartObj;
import pers.aishuang.flink.streaming.entity.OnlineDataObj;
import pers.aishuang.flink.streaming.entity.VehicleInfoModel;
import pers.aishuang.flink.streaming.function.flatmap.VehicleInfoMapMysqlFunction;
import pers.aishuang.flink.streaming.function.map.LocactionInfoReidsFunction;
import pers.aishuang.flink.streaming.function.window.OnlineStatisticsWindowFunction;
import pers.aishuang.flink.streaming.sink.mysql.OnlineStatisticsMysqlSink;
import pers.aishuang.flink.streaming.source.mysql.VehicleInfoMysqlSource;
import pers.aishuang.flink.streaming.utils.JsonParsePartUtil;
import java.util.HashMap;
import java.util.concurrent.TimeUnit;
/**
* 实现车辆的实时上报故障诊断业务分析
* 1、读取车辆的数据,将jsob字符串转换成对象
* 2、读取出来正确的数据
* 3、将车辆的数据通过地理位置(经纬度)去redis中拉取(geoHash算法)
* -- 如果拉取数据成功,直接封装成对象
* -- 如果拉取省市区地理位置失败,异步数据流读取高德API请求地理位置并将数据保存到redis中
* 4、将从redis和高德API拉宽的数据进行合并处理
* 5、使用窗口操作,比如30s统计一些窗口内的故障告警对象返回
* 6、读取mysql数据库中的车辆静态数据,车辆车型车系,销售时间等
* 7、窗口数据和静态数据进行connect并flatMap,拉宽数据
* 8、将数据写入到mysql中
* 9、执行任务流环境
*
*/
public class OnlineStatisticsTask extends BaseTask{
private static final Logger logger = LoggerFactory.getLogger(OnlineStatisticsTask.class);
public static void main(String[] args) throws Exception{
//1. 初始化Flink流处理的执行环境(事件时间、checkpoint、hadoop name)
StreamExecutionEnvironment env = getEnv(OnlineStatisticsTask.class.getSimpleName());
//2. 接入kafka数据源,消费kafka数据
DataStreamSource<String> kafkaStream = getKafkaStream(
env,
"__consumer_online_alarm_analysis_",
SimpleStringSchema.class);
//3. 将消费到的json字符串转换成ItcastDataPartObj对象
DataStream<ItcastDataPartObj> source = kafkaStream
.map(JsonParsePartUtil::parseJsonToObject)
//4. 过滤掉异常数据,根据errorDara属性判断(没有VIN号和终端时间 和json解析失败的数据都视为异常数据)
.filter(obj -> StringUtils.isEmpty(obj.getErrorData()));
//5. 读取redis中的位置数据<geohash,VehicleLocationModel> ,生成新的数据流
SingleOutputStreamOperator<ItcastDataPartObj> itcastDataMapStream = source.map(new LocactionInfoReidsFunction());
//6. 过滤出 redis拉宽成功的地理位置数据
SingleOutputStreamOperator<ItcastDataPartObj> okWithLocationStream = itcastDataMapStream
.filter(obj -> StringUtils.isNotEmpty(obj.getProvince()));
//7. 过滤出 redis拉框失败的地理位置数据
SingleOutputStreamOperator<ItcastDataPartObj> ngWithLocationStream = itcastDataMapStream
.filter(obj -> StringUtils.isEmpty(obj.getProvince()));
//8. 对redis拉框失败的地理位置数据使用异步IO访问高德地图地理位置查询地理位置信息,并将返回结果写入到reids中
//-- 异步数据流 :处理之后的数据(成功补齐数据和失败的ItcastDataPartObj)
//-- 存在问题,http请求失败的数据还在里面,仍然缺少坐标详细信息
SingleOutputStreamOperator<ItcastDataPartObj> withLocationAsyncStream = AsyncDataStream
//无序返回(可设置返回是否有序,先访问先返回,后访问后返回,设置有序会造成效率低,所以设置为无序)
.unorderedWait(
ngWithLocationStream,
new AsyncHttpQueryFunction(),
3000, //设置超时时间,超过设定时间,认为任务请求失败,3000ms=》 3s
TimeUnit.MICROSECONDS //超时单位
);
//9. 将redis拉宽的地理位置数据与高德API拉宽的地理位置数据进行上下合并(合流)
//flatmap(FlatMap) / map(Map) 用于单流
// broadcast + connect + flatmap(CoFlatMap)/map(CoMap) 数据拉宽,主要用于两流的数据左右合并(不要求两流的数据类型一致)
// union 数据数据上下合并,要求数据类型一致。
//FlatMap 和 Map是用于单流的,CoFlatMap和CoMap是用于两条流连接(co:connect)
WindowedStream<ItcastDataPartObj, String, TimeWindow> windowStream = okWithLocationStream
.union(withLocationAsyncStream)
//10. 创建原始数据的30s的滚动窗口,根据vin进行分流操作
.assignTimestampsAndWatermarks(
//水印乱序时间设为3s
new BoundedOutOfOrdernessTimestampExtractor<ItcastDataPartObj>(Time.seconds(3)) {
@Override
public long extractTimestamp(ItcastDataPartObj element) {
//指定JavaBean中某个字段数据作为事件时间,必须是long类型
return element.getTerminalTimeStamp();
}
}
)
//设置分组,指定JavaBean的vin字段作为分组字段
.keyBy(obj -> obj.getVin())
//设置窗口类型:为滚动事件时间窗口,并设置窗口大小
.window(TumblingEventTimeWindows.of(Time.seconds(30)));
//11. 对原始数据的窗口流数据进行实时故障分析(区分出来告警数据和非告警数据19个告警字段)
SingleOutputStreamOperator<OnlineDataObj> onlineStatisticsStream = windowStream
.apply(new OnlineStatisticsWindowFunction());
//12. 加载业务中间表(7张表:车辆表、车辆类型表、车辆销售记录表、车辆用途表4张),并进行广播
DataStream<HashMap<String, VehicleInfoModel>> vehicleInfoBroadcastStream = env
.addSource(new VehicleInfoMysqlSource()).broadcast();
//13. 将第11步和第12步的广播流结果进行关联,并应用拉宽操作。
//上报车辆不在库记载的直接丢了
SingleOutputStreamOperator<OnlineDataObj> result = onlineStatisticsStream
.connect(vehicleInfoBroadcastStream)
.flatMap(new VehicleInfoMapMysqlFunction());
//14. 将拉框后的结果数据写入到mysql数据库中
result.addSink(new OnlineStatisticsMysqlSink());
//15. 启动作业(触发执行)
env.execute(OnlineStatisticsTask.class.getSimpleName());
}
}
这篇关于Flink处理--异步IO的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!