申明:ROS学习参考了古月居老师的Blibli视频,强烈推荐大家看视频学习,本博客仅记录自己的学习经历和心得,欢迎大家一起讨论!
前言:本讲对应古月老师 ROS入门21讲的第17和18讲,综合性比较强。个人认为难度较大,必须好好啃一下,记录自己的学习过程,内容会逐渐补充!
博主在大三时期学习过机器人控制系统,其中对此部分知识有很细致的介绍,不过时间过去很久了,需要抽时间好好整理下。在此做一个标记,后续补充相关内容。
TF坐标变换:1、广播TF变换 2、监听TF变换
机器人坐标变换
$ sudo apt-get install ros-melodic-turtle-tf $ roslaunch turtle_tf turtle_tf_demo.launch $ rosrun turtlesim turtle_teleop_key $ rosrun tf view_frames
TF位置关系(可以看出turtle1和turtle2都与world坐标系相联系)
其中,红色小龟自由移动,绿色小龟跟随移动,最终位置重合。
rosrun tf tf_echo turtle1 turtle2
使用此命令可以得到当前时刻,turtle1 和turtle2两个坐标系之间的坐标变换,Translation(平移),Rotation(旋转),分别通过四元数、弧度、角度进行描述。
T
t
u
r
t
l
e
1
−
t
u
r
t
l
e
2
=
T
t
u
r
t
l
e
1
−
w
o
r
l
d
∗
T
w
o
r
l
d
−
t
u
r
t
l
e
2
T_{turtle1-turtle2} = T_{turtle1-world}*T_{world-turtle2}
Tturtle1−turtle2=Tturtle1−world∗Tworld−turtle2
在Rviz中表示
$ cd ~/catkin_ws/src $ catkin_create_pkg learning_tf roscpp rospy tf turtlesim
cd ~/catkin_ws/src/learning_tf/src touch turtle_tf_broadcaster.cpp
/** * 该例程产生tf数据,订阅turtle1和turtle2的位置信息,广播给tf树 */ #include <ros/ros.h> #include <tf/transform_broadcaster.h> #include <turtlesim/Pose.h> std::string turtle_name; void poseCallback(const turtlesim::PoseConstPtr& msg) { // 创建tf的广播器 static tf::TransformBroadcaster br; // 初始化tf数据 tf::Transform transform; transform.setOrigin( tf::Vector3(msg->x, msg->y, 0.0) ); tf::Quaternion q; q.setRPY(0, 0, msg->theta); transform.setRotation(q); // 广播world与海龟坐标系之间的tf数据 br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "world", turtle_name)); } int main(int argc, char** argv) { // 初始化ROS节点 ros::init(argc, argv, "my_tf_broadcaster"); // 输入参数作为海龟的名字 if (argc != 2) { ROS_ERROR("need turtle name as argument"); return -1; } turtle_name = argv[1]; // 订阅海龟的位姿话题 ros::NodeHandle node; ros::Subscriber sub = node.subscribe(turtle_name+"/pose", 10, &poseCallback); // 循环等待回调函数 ros::spin(); return 0; };
代码解释:
touch turtle_tf_broadcaster.py
#!/usr/bin/env python # -*- coding: utf-8 -*- #该例程产生tf数据,订阅turtle1和turtle2的位置信息,广播给tf树 import roslib roslib.load_manifest('learning_tf') import rospy import tf import turtlesim.msg def handle_turtle_pose(msg, turtlename): br = tf.TransformBroadcaster() br.sendTransform((msg.x, msg.y, 0), tf.transformations.quaternion_from_euler(0, 0, msg.theta), rospy.Time.now(), turtlename, "world") if __name__ == '__main__': rospy.init_node('turtle_tf_broadcaster') turtlename = rospy.get_param('~turtle') rospy.Subscriber('/%s/pose' % turtlename, turtlesim.msg.Pose, handle_turtle_pose, turtlename) rospy.spin()
cd ~/catkin_ws/src/learning_tf/src touch turtle_tf_listener.cpp
/** * 该例程监听tf数据,并计算、发布turtle2的速度指令 */ #include <ros/ros.h> #include <tf/transform_listener.h> #include <geometry_msgs/Twist.h> #include <turtlesim/Spawn.h> int main(int argc, char** argv) { // 初始化ROS节点 ros::init(argc, argv, "my_tf_listener"); // 创建节点句柄 ros::NodeHandle node; // 请求产生turtle2 ros::service::waitForService("/spawn"); ros::ServiceClient add_turtle = node.serviceClient<turtlesim::Spawn>("/spawn"); turtlesim::Spawn srv; add_turtle.call(srv); // 创建发布turtle2速度控制指令的发布者 ros::Publisher turtle_vel = node.advertise<geometry_msgs::Twist>("/turtle2/cmd_vel", 10); // 创建tf的监听器 tf::TransformListener listener; ros::Rate rate(10.0); while (node.ok()) { // 获取turtle1与turtle2坐标系之间的tf数据 tf::StampedTransform transform; try { listener.waitForTransform("/turtle2", "/turtle1", ros::Time(0), ros::Duration(3.0)); listener.lookupTransform("/turtle2", "/turtle1", ros::Time(0), transform); } catch (tf::TransformException &ex) { ROS_ERROR("%s",ex.what()); ros::Duration(1.0).sleep(); continue; } // 根据turtle1与turtle2坐标系之间的位置关系,发布turtle2的速度控制指令 geometry_msgs::Twist vel_msg; vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(), transform.getOrigin().x()); vel_msg.linear.x = 0.5 * sqrt(pow(transform.getOrigin().x(), 2) + pow(transform.getOrigin().y(), 2)); turtle_vel.publish(vel_msg); rate.sleep(); } return 0; };
代码解释:
touch turtle_tf_broadcaster.cpp
#!/usr/bin/env python # -*- coding: utf-8 -*- #该例程监听tf数据,并计算、发布turtle2的速度指令 import roslib roslib.load_manifest('learning_tf') import rospy import math import tf import geometry_msgs.msg import turtlesim.srv if __name__ == '__main__': rospy.init_node('turtle_tf_listener') listener = tf.TransformListener() rospy.wait_for_service('spawn') spawner = rospy.ServiceProxy('spawn', turtlesim.srv.Spawn) spawner(4, 2, 0, 'turtle2') turtle_vel = rospy.Publisher('turtle2/cmd_vel', geometry_msgs.msg.Twist,queue_size=1) rate = rospy.Rate(10.0) while not rospy.is_shutdown(): try: (trans,rot) = listener.lookupTransform('/turtle2', '/turtle1', rospy.Time(0)) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): continue angular = 4 * math.atan2(trans[1], trans[0]) linear = 0.5 * math.sqrt(trans[0] ** 2 + trans[1] ** 2) cmd = geometry_msgs.msg.Twist() cmd.linear.x = linear cmd.angular.z = angular turtle_vel.publish(cmd) rate.sleep()
在CMakeLists.txt 文件中设置链接库和可执行文件
add_executable(turtle_tf_broadcaster src/turtle_tf_broadcaster.cpp) target_link_libraries(turtle_tf_broadcaster ${catkin_LIBRARIES}) add_executable(turtle_tf_listener src/turtle_tf_listener.cpp) target_link_libraries(turtle_tf_listener ${catkin_LIBRARIES})
在工作空间根目录下使用catkin_make指令编译。
roscore rosrun turtlesim turtlesim_node rosrun learning_tf turtle_tf_broadcaster __name:=turtle1_tf_broadcaster /turtle1 rosrun learning_tf turtle_tf_broadcaster __name:=turtle2_tf_broadcaster /turtle2 rosrun learning_tf turtle_tf_listener rosrun turtlesim turtle_teleop_key
roscore rosrun turtlesim turtlesim_node rosrun learning_tf turtle_tf_broadcaster.py __name:=turtle1_tf_broadcaster _turtle:=turtle1 rosrun learning_tf turtle_tf_broadcaster.py __name:=turtle2_tf_broadcaster _turtle:=turtle2 rosrun learning_tf turtle_tf_listener.py rosrun turtlesim turtle_teleop_key
本讲结束,学无止境,继续加油!