直接上代码
import pandas # print(pandas.Series([232, 455, 2, 3456, 2])) t = pandas.Series([15,2,3,4,5],index=list("abcde")) # print(t["c"]) # print(t[1:4]) # print(t[[1,4]]) # print(t[t>2]) print(t.values)
import numpy import pandas numpy.random.seed(9) t = pandas.DataFrame(numpy.random.random(40).reshape(10,4), index=list("abcdefghij"),columns=list("ABCD")) # print(t) #同理,t也可以是字典,或者字典构成的列表 # print(t.index) # print(t.columns) # print(t.values) # print(t["D"].mean()) # print(t.shape) # print(t.dtypes) # print(t.ndim) # print(t.info()) # print(t.describe()) # print(t.sort_values(by = "e", ascending= False)) # print(t[:7]) #取前7行 # print(t["B"]) #取列 # print(type(t["B"])) # print(t.loc["h", :]) #用loc的各种切片。这里注意loc后面是[] # print(t.loc[["h","a"], ["B","D"]]) # print(t.loc[["h","a"], "A":"C"]) # print(t.iloc[1:8,[3,1]]) #用iloc切片,直接用数字索引 # t = t.iloc[1:4,[3,2,1]] #测试下赋值 # print(t) # t[t>0.5]=numpy.NaN # print(t) # print(t[(t["D"]>0.2)&(t["D"]<0.8)]) #带条件切片,与条件 # print(t[(t["A"]>0.8)|(t["D"]>0.8)]) #带条件切片,或条件 # t = t[t>0.5] # t2 = pandas.notnull(t) #False为NaN # # print(t) # # print(t2) # # print(t.dropna(how="all")) #删除NaN # print(t.fillna(8888)) #填充NaN