用keras搭建了一个简单的卷积神经网络,就一个卷积层,训练Cifar10,效果依然不错,卷积网络的强大可得知,改一改路径就能训练成功了
import tensorflow as tf import os import numpy as np from matplotlib import pyplot as plt from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Dense from tensorflow.keras import Model np.set_printoptions(threshold = np.inf) cifar10 = tf.keras.datasets.cifar10 (x_train,y_train),(x_test,y_test) = cifar10.load_data() x_train,x_test = x_train/255.0,x_test/255.0 class Baseline(Model): def __init__(self): super(Baseline,self).__init__() self.c1 = Conv2D(filters = 6,kernel_size = (5,5),padding = 'same') self.b1 = BatchNormalization() self.a1 = Activation('relu') self.p1 = MaxPool2D(pool_size = (2,2),strides= 2,padding = 'same') self.d1 = Dropout(0.2) self.flatten = Flatten() self.f1 = Dense(128,activation = 'relu') self.d2 = Dropout(0.2) self.f2 = Dense(10,activation = 'softmax') def call(self,x): x = self.c1(x) x = self.b1(x) x = self.a1(x) x = self.p1(x) x = self.d1(x) x = self.flatten(x) x = self.f1(x) x = self.d2(x) y = self.f2(x) return y model = Baseline() model.compile(optimizer = 'adam', loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics = ['sparse_categorical_accuracy']) checkpoint_save_path = "C:/Users/15792/Desktop/AI/Tensorflow0.0/cifar10_model/cifar_model" if os.path.exists(checkpoint_save_path + '.index'): print("------------------------load the model---------------------------") model.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath = checkpoint_save_path, save_weights_only = True, save_best_only = True) history = model.fit(x_train,y_train,batch_size =32, epochs = 5,validation_data = (x_test,y_test),validation_freq = 1, callbacks = [cp_callback]) model.summary() file = open("C:/Users/15792/Desktop/AI/Tensorflow0.0/cifar10_model.weights.txt","w") for v in model.trainable_variables: file.write(str(v.name) + '\n') file.write(str(v.shape) + '\n') file.write(str(v.numpy()) + '\n') file.close() acc = history.history['sparse_categorical_accuracy'] val_acc = history.history['val_sparse_categorical_accuracy'] loss = history.history['loss'] val_loss= history.history['val_loss'] plt.subplot(1,2,1) plt.plot(acc,label = 'Trainig Accuracy') plt.plot(val_acc,label = 'Validation Accuracy') plt.title('Training and Validation Accuracy') plt.legend() plt.subplot(1,2,2) plt.plot(loss,label = 'Training Loss') plt.plot(val_loss,label = 'Validation Loss') plt.title('Training and Validation Loss') plt.legend() plt.show()