求下列导数: (1)
d
d
x
x
10
+
1
0
x
+
log
x
(
10
)
\frac{d}{dx} x^{10} + 10^x + \log_x(10)
dxdx10+10x+logx(10); (2)
d
2
d
x
2
ln
(
1
+
x
)
\frac{d^2}{dx^2} \ln(1+x)
dx2d2ln(1+x)当
x
=
1
x=1
x=1时的值。
求下列积分的符号解: (1)
∫
cos
(
2
x
)
cos
(
3
x
)
d
x
\int \cos(2x) \cos(3x) dx
∫cos(2x)cos(3x)dx; (2)
∫
−
a
a
(
x
2
arctan
x
x
4
+
1
−
sin
(
x
2
)
2
)
d
x
\int_{-a}^{a} \left(\frac{x^2 \arctan x}{x^4 + 1} - \sin(\frac{x}{2})^2\right) dx
∫−aa(x4+1x2arctanx−sin(2x)2)dx; (3)
∫
1
4
[
∫
y
2
(
x
2
+
y
2
)
d
x
]
d
y
\int_1^4 \left[\int_{\sqrt{y}}^2 (x^2 + y^2) dx\right] dy
∫14[∫y
2(x2+y2)dx]dy。
syms x y a
int(cos(2*x)*cos(3*x)) % sol_4_(1)
int((x^2 * atan(x) / (x^4 + 1)) - (sin(x/2))^2, x, [-a a]) % sol_4_(2)
int(int((x^2 + y^2), x, [sqrt(y) 2]), y, [1 4]) % sol_4_(3)
求下列定积分的数值解: (1)
∫
0
π
sin
3
(
x
)
−
sin
5
(
x
)
d
x
\int_0^\pi \sqrt{\sin^3(x) - \sin^5(x)} dx
∫0πsin3(x)−sin5(x)
dx; (2)
∫
1
3
d
x
[
∫
x
−
1
2
e
y
2
d
y
]
\int_1^3dx [\int_{x-1}^2 e^{y^2} dy]
∫13dx[∫x−12ey2dy]。
求下列微分方程的符号解: (1)
d
d
x
y
+
y
x
=
sin
(
x
)
x
,
y
(
π
)
=
1
\frac{d}{dx} y + \frac{y}{x} = \frac{\sin(x)}{x}, y(\pi) = 1
dxdy+xy=xsin(x),y(π)=1; (2)
y
′
′
+
y
′
2
=
1
,
y
(
0
)
=
1
,
y
′
(
0
)
=
2
y^{\prime \prime} + y^{\prime 2} = 1, y(0) = 1, y^\prime(0) = 2
y′′+y′2=1,y(0)=1,y′(0)=2。
求下列微分方程的数值解并绘出求解区间的图,并与符号解对比: (1)
d
d
x
y
+
y
cot
x
=
5
e
cos
x
,
y
(
π
2
)
=
−
4
\frac{d}{dx} y + y \cot x = 5 e^{\cos x}, y\left(\frac{\pi}{2} \right) = -4
dxdy+ycotx=5ecosx,y(2π)=−4,求解区间
[
π
2
,
π
]
[\frac{\pi}{2}, \pi]
[2π,π]; (2)
x
2
y
′
′
+
4
x
y
′
+
2
y
=
0
,
y
(
1
)
=
2
,
y
′
(
1
)
=
−
3
x^2 y{\prime \prime} + 4 x y^\prime + 2 y = 0, y(1) = 2, y^\prime(1) = -3
x2y′′+4xy′+2y=0,y(1)=2,y′(1)=−3(本小题选做) 。
figure;
[x, y] = ode45(@(x, y) 5.*exp(cos(x)) - y.*cot(x), [pi/2 pi-0.1], -4);
plot(x, y, '-o'); % sol_7_(1)
title('7\_(1)')
grid on