模板就是建立通用的模具,大大提高复用性
例如生活中的模板
一寸照片模板:
PPT模板:
模板的特点:
C++另一种编程思想称为 泛型编程 ,主要利用的技术就是模板
C++提供两种模板机制:函数模板和类模板
函数模板作用:
建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。
语法:
template<typename T> 函数声明或定义
解释:
template — 声明创建模板
typename — 表面其后面的符号是一种数据类型,可以用class代替
T — 通用的数据类型,名称可以替换,通常为大写字母
示例:
//交换整型函数 void swapInt(int& a, int& b) { int temp = a; a = b; b = temp; } //交换浮点型函数 void swapDouble(double& a, double& b) { double temp = a; a = b; b = temp; } //利用模板提供通用的交换函数 template<typename T> void mySwap(T& a, T& b) { T temp = a; a = b; b = temp; } void test01() { int a = 10; int b = 20; //swapInt(a, b); //利用模板实现交换 //1、自动类型推导 mySwap(a, b); //2、显示指定类型 mySwap<int>(a, b); cout << "a = " << a << endl; cout << "b = " << b << endl; } int main() { test01(); system("pause"); return 0; }
总结:
注意事项:
自动类型推导,必须推导出一致的数据类型T,才可以使用
模板必须要确定出T的数据类型,才可以使用
示例:
//利用模板提供通用的交换函数 template<class T> void mySwap(T& a, T& b) { T temp = a; a = b; b = temp; } // 1、自动类型推导,必须推导出一致的数据类型T,才可以使用 void test01() { int a = 10; int b = 20; char c = 'c'; mySwap(a, b); // 正确,可以推导出一致的T //mySwap(a, c); // 错误,推导不出一致的T类型 } // 2、模板必须要确定出T的数据类型,才可以使用 template<class T> void func() { cout << "func 调用" << endl; } void test02() { //func(); //错误,模板不能独立使用,必须确定出T的类型 func<int>(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板 } int main() { test01(); test02(); system("pause"); return 0; }
总结:
案例描述:
示例:
//交换的函数模板 template<typename T> void mySwap(T &a, T&b) { T temp = a; a = b; b = temp; } template<class T> // 也可以替换成typename //利用选择排序,进行对数组从大到小的排序 void mySort(T arr[], int len) { for (int i = 0; i < len; i++) { int max = i; //最大数的下标 for (int j = i + 1; j < len; j++) { if (arr[max] < arr[j]) { max = j; } } if (max != i) //如果最大数的下标不是i,交换两者 { mySwap(arr[max], arr[i]); } } } template<typename T> void printArray(T arr[], int len) { for (int i = 0; i < len; i++) { cout << arr[i] << " "; } cout << endl; } void test01() { //测试char数组 char charArr[] = "bdcfeagh"; int num = sizeof(charArr) / sizeof(char); mySort(charArr, num); printArray(charArr, num); } void test02() { //测试int数组 int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 }; int num = sizeof(intArr) / sizeof(int); mySort(intArr, num); printArray(intArr, num); } int main() { test01(); test02(); system("pause"); return 0; }
总结:模板可以提高代码复用,需要熟练掌握
普通函数与函数模板区别:
示例:
//普通函数 int myAdd01(int a, int b) { return a + b; } //函数模板 template<class T> T myAdd02(T a, T b) { return a + b; } //使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换 void test01() { int a = 10; int b = 20; char c = 'c'; cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型 'c' 对应 ASCII码 99 //myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换 myAdd02<int>(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换 } int main() { test01(); system("pause"); return 0; }
总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T
调用规则如下:
示例:
//普通函数与函数模板调用规则 void myPrint(int a, int b) { cout << "调用的普通函数" << endl; } template<typename T> void myPrint(T a, T b) { cout << "调用的模板" << endl; } template<typename T> void myPrint(T a, T b, T c) { cout << "调用重载的模板" << endl; } void test01() { //1、如果函数模板和普通函数都可以实现,优先调用普通函数 // 注意 如果告诉编译器 普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到 int a = 10; int b = 20; myPrint(a, b); //调用普通函数 //2、可以通过空模板参数列表来强制调用函数模板 myPrint<>(a, b); //调用函数模板 //3、函数模板也可以发生重载 int c = 30; myPrint(a, b, c); //调用重载的函数模板 //4、 如果函数模板可以产生更好的匹配,优先调用函数模板 char c1 = 'a'; char c2 = 'b'; myPrint(c1, c2); //调用函数模板 } int main() { test01(); system("pause"); return 0; }
总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性
局限性:
例如:
template<class T> void f(T a, T b) { a = b; }
在上述代码中提供的赋值操作,如果传入的a和b是一个数组,就无法实现了
再例如:
template<class T> void f(T a, T b) { if(a > b) { ... } }
在上述代码中,如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行
因此C++为了解决这种问题,提供模板的重载,可以为这些特定的类型提供具体化的模板
示例:
#include<iostream> using namespace std; #include <string> class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; } string m_Name; int m_Age; }; //普通函数模板 template<class T> bool myCompare(T& a, T& b) { if (a == b) { return true; } else { return false; } } //具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型 //具体化优先于常规模板 template<> bool myCompare(Person &p1, Person &p2) { if ( p1.m_Name == p2.m_Name && p1.m_Age == p2.m_Age) { return true; } else { return false; } } void test01() { int a = 10; int b = 20; //内置数据类型可以直接使用通用的函数模板 bool ret = myCompare(a, b); if (ret) { cout << "a == b " << endl; } else { cout << "a != b " << endl; } } void test02() { Person p1("Tom", 10); Person p2("Tom", 10); //自定义数据类型,不会调用普通的函数模板 //可以创建具体化的Person数据类型的模板,用于特殊处理这个类型 bool ret = myCompare(p1, p2); if (ret) { cout << "p1 == p2 " << endl; } else { cout << "p1 != p2 " << endl; } } int main() { test01(); test02(); system("pause"); return 0; }
总结:
类模板作用:
语法:
template<typename T> 类
解释:
template — 声明创建模板
typename — 表面其后面的符号是一种数据类型,可以用class代替
T — 通用的数据类型,名称可以替换,通常为大写字母
示例:
#include <string> //类模板 template<class NameType, class AgeType> class Person { public: Person(NameType name, AgeType age) { this->mName = name; this->mAge = age; } void showPerson() { cout << "name: " << this->mName << " age: " << this->mAge << endl; } public: NameType mName; AgeType mAge; }; void test01() { // 指定NameType 为string类型,AgeType 为 int类型 Person<string, int>P1("孙悟空", 999); P1.showPerson(); } int main() { test01(); system("pause"); return 0; }
总结:类模板和函数模板语法相似,在声明模板template后面加类,此类称为类模板
类模板与函数模板区别主要有两点:
示例:
#include <string> //类模板 template<class NameType, class AgeType = int> class Person { public: Person(NameType name, AgeType age) { this->mName = name; this->mAge = age; } void showPerson() { cout << "name: " << this->mName << " age: " << this->mAge << endl; } public: NameType mName; AgeType mAge; }; //1、类模板没有自动类型推导的使用方式 void test01() { // Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导 Person <string ,int>p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板 p.showPerson(); } //2、类模板在模板参数列表中可以有默认参数 void test02() { Person <string> p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数 p.showPerson(); } int main() { test01(); test02(); system("pause"); return 0; }
总结:
类模板中成员函数和普通类中成员函数创建时机是有区别的:
示例:
class Person1 { public: void showPerson1() { cout << "Person1 show" << endl; } }; class Person2 { public: void showPerson2() { cout << "Person2 show" << endl; } }; template<class T> class MyClass { public: T obj; //类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成 void fun1() { obj.showPerson1(); } void fun2() { obj.showPerson2(); } }; void test01() { MyClass<Person1> m; m.fun1(); //m.fun2();//编译会出错,说明函数调用才会去创建成员函数 } int main() { test01(); system("pause"); return 0; }
总结:类模板中的成员函数并不是一开始就创建的,在调用时才去创建
学习目标:
一共有三种传入方式:
示例:
#include <string> //类模板 template<class NameType, class AgeType = int> class Person { public: Person(NameType name, AgeType age) { this->mName = name; this->mAge = age; } void showPerson() { cout << "name: " << this->mName << " age: " << this->mAge << endl; } public: NameType mName; AgeType mAge; }; //1、指定传入的类型 void printPerson1(Person<string, int> &p) { p.showPerson(); } void test01() { Person <string, int >p("孙悟空", 100); printPerson1(p); } //2、参数模板化 template <class T1, class T2> void printPerson2(Person<T1, T2>&p) { p.showPerson(); cout << "T1的类型为: " << typeid(T1).name() << endl; cout << "T2的类型为: " << typeid(T2).name() << endl; } void test02() { Person <string, int >p("猪八戒", 90); printPerson2(p); } //3、整个类模板化 template<class T> void printPerson3(T & p) { cout << "T的类型为: " << typeid(T).name() << endl; p.showPerson(); } void test03() { Person <string, int >p("唐僧", 30); printPerson3(p); } int main() { test01(); test02(); test03(); system("pause"); return 0; }
总结:
当类模板碰到继承时,需要注意一下几点:
示例:
template<class T> class Base { T m; }; //class Son:public Base //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承 class Son :public Base<int> //必须指定一个类型 { }; void test01() { Son c; } //类模板继承类模板 ,可以用T2指定父类中的T类型 template<class T1, class T2> class Son2 :public Base<T2> { public: Son2() { cout << typeid(T1).name() << endl; cout << typeid(T2).name() << endl; } }; void test02() { Son2<int, char> child1; } int main() { test01(); test02(); system("pause"); return 0; }
总结:如果父类是类模板,子类需要指定出父类中T的数据类型
学习目标:能够掌握类模板中的成员函数类外实现
示例:
#include <string> //类模板中成员函数类外实现 template<class T1, class T2> class Person { public: //成员函数类内声明 Person(T1 name, T2 age); void showPerson(); public: T1 m_Name; T2 m_Age; }; //构造函数 类外实现 template<class T1, class T2> Person<T1, T2>::Person(T1 name, T2 age) { this->m_Name = name; this->m_Age = age; } //成员函数 类外实现 template<class T1, class T2> void Person<T1, T2>::showPerson() { cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl; } void test01() { Person<string, int> p("Tom", 20); p.showPerson(); } int main() { test01(); system("pause"); return 0; }
总结:类模板中成员函数类外实现时,需要加上模板参数列表
学习目标:
问题:
解决:
示例:
person.hpp中代码:
#pragma once #include <iostream> using namespace std; #include <string> template<class T1, class T2> class Person { public: Person(T1 name, T2 age); void showPerson(); public: T1 m_Name; T2 m_Age; }; //构造函数 类外实现 template<class T1, class T2> Person<T1, T2>::Person(T1 name, T2 age) { this->m_Name = name; this->m_Age = age; } //成员函数 类外实现 template<class T1, class T2> void Person<T1, T2>::showPerson() { cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl; }
类模板分文件编写.cpp中代码
#include<iostream> using namespace std; //#include "person.h" #include "person.cpp" //解决方式1,包含cpp源文件 //解决方式2,将声明和实现写到一起,文件后缀名改为.hpp #include "person.hpp" void test01() { Person<string, int> p("Tom", 10); p.showPerson(); } int main() { test01(); system("pause"); return 0; }
总结:主流的解决方式是第二种,将类模板成员函数写到一起,并将后缀名改为.hpp
学习目标:
全局函数类内实现 - 直接在类内声明友元即可
全局函数类外实现 - 需要提前让编译器知道全局函数的存在
示例:
#include <string> //2、全局函数配合友元 类外实现 - 先做函数模板声明,下方在做函数模板定义,在做友元 template<class T1, class T2> class Person; //如果声明了函数模板,可以将实现写到后面,否则需要将实现体写到类的前面让编译器提前看到 //template<class T1, class T2> void printPerson2(Person<T1, T2> & p); template<class T1, class T2> void printPerson2(Person<T1, T2> & p) { cout << "类外实现 ---- 姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl; } template<class T1, class T2> class Person { //1、全局函数配合友元 类内实现 friend void printPerson(Person<T1, T2> & p) { cout << "姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl; } //全局函数配合友元 类外实现 friend void printPerson2<>(Person<T1, T2> & p); public: Person(T1 name, T2 age) { this->m_Name = name; this->m_Age = age; } private: T1 m_Name; T2 m_Age; }; //1、全局函数在类内实现 void test01() { Person <string, int >p("Tom", 20); printPerson(p); } //2、全局函数在类外实现 void test02() { Person <string, int >p("Jerry", 30); printPerson2(p); } int main() { //test01(); test02(); system("pause"); return 0; }
总结:建议全局函数做类内实现,用法简单,而且编译器可以直接识别
案例描述: 实现一个通用的数组类,要求如下:
示例:
myArray.hpp中代码
#pragma once #include <iostream> using namespace std; template<class T> class MyArray { public: //构造函数 MyArray(int capacity) { this->m_Capacity = capacity; this->m_Size = 0; pAddress = new T[this->m_Capacity]; } //拷贝构造 MyArray(const MyArray & arr) { this->m_Capacity = arr.m_Capacity; this->m_Size = arr.m_Size; this->pAddress = new T[this->m_Capacity]; for (int i = 0; i < this->m_Size; i++) { //如果T为对象,而且还包含指针,必须需要重载 = 操作符,因为这个等号不是 构造 而是赋值, // 普通类型可以直接= 但是指针类型需要深拷贝 this->pAddress[i] = arr.pAddress[i]; } } //重载= 操作符 防止浅拷贝问题 MyArray& operator=(const MyArray& myarray) { if (this->pAddress != NULL) { delete[] this->pAddress; this->m_Capacity = 0; this->m_Size = 0; } this->m_Capacity = myarray.m_Capacity; this->m_Size = myarray.m_Size; this->pAddress = new T[this->m_Capacity]; for (int i = 0; i < this->m_Size; i++) { this->pAddress[i] = myarray[i]; } return *this; } //重载[] 操作符 arr[0] T& operator [](int index) { return this->pAddress[index]; //不考虑越界,用户自己去处理 } //尾插法 void Push_back(const T & val) { if (this->m_Capacity == this->m_Size) { return; } this->pAddress[this->m_Size] = val; this->m_Size++; } //尾删法 void Pop_back() { if (this->m_Size == 0) { return; } this->m_Size--; } //获取数组容量 int getCapacity() { return this->m_Capacity; } //获取数组大小 int getSize() { return this->m_Size; } //析构 ~MyArray() { if (this->pAddress != NULL) { delete[] this->pAddress; this->pAddress = NULL; this->m_Capacity = 0; this->m_Size = 0; } } private: T * pAddress; //指向一个堆空间,这个空间存储真正的数据 int m_Capacity; //容量 int m_Size; // 大小 };
类模板案例—数组类封装.cpp中
#include "myArray.hpp" #include <string> void printIntArray(MyArray<int>& arr) { for (int i = 0; i < arr.getSize(); i++) { cout << arr[i] << " "; } cout << endl; } //测试内置数据类型 void test01() { MyArray<int> array1(10); for (int i = 0; i < 10; i++) { array1.Push_back(i); } cout << "array1打印输出:" << endl; printIntArray(array1); cout << "array1的大小:" << array1.getSize() << endl; cout << "array1的容量:" << array1.getCapacity() << endl; cout << "--------------------------" << endl; MyArray<int> array2(array1); array2.Pop_back(); cout << "array2打印输出:" << endl; printIntArray(array2); cout << "array2的大小:" << array2.getSize() << endl; cout << "array2的容量:" << array2.getCapacity() << endl; } //测试自定义数据类型 class Person { public: Person() {} Person(string name, int age) { this->m_Name = name; this->m_Age = age; } public: string m_Name; int m_Age; }; void printPersonArray(MyArray<Person>& personArr) { for (int i = 0; i < personArr.getSize(); i++) { cout << "姓名:" << personArr[i].m_Name << " 年龄: " << personArr[i].m_Age << endl; } } void test02() { //创建数组 MyArray<Person> pArray(10); Person p1("孙悟空", 30); Person p2("韩信", 20); Person p3("妲己", 18); Person p4("王昭君", 15); Person p5("赵云", 24); //插入数据 pArray.Push_back(p1); pArray.Push_back(p2); pArray.Push_back(p3); pArray.Push_back(p4); pArray.Push_back(p5); printPersonArray(pArray); cout << "pArray的大小:" << pArray.getSize() << endl; cout << "pArray的容量:" << pArray.getCapacity() << endl; } int main() { //test01(); test02(); system("pause"); return 0; }
总结:
能够利用所学知识点实现通用的数组
长久以来,软件界一直希望建立一种可重复利用的东西
C++的面向对象和泛型编程思想,目的就是复用性的提升
大多情况下,数据结构和算法都未能有一套标准,导致被迫从事大量重复工作
为了建立数据结构和算法的一套标准,诞生了STL
STL大体分为六大组件,分别是:容器、算法、迭代器、仿函数、适配器(配接器)、空间配置器
**容器:**置物之所也
STL容器就是将运用最广泛的一些数据结构实现出来
常用的数据结构:数组, 链表,树, 栈, 队列, 集合, 映射表 等
这些容器分为序列式容器和关联式容器两种:
序列式容器:强调值的排序,序列式容器中的每个元素均有固定的位置。
关联式容器:二叉树结构,各元素之间没有严格的物理上的顺序关系
**算法:**问题之解法也
有限的步骤,解决逻辑或数学上的问题,这一门学科我们叫做算法(Algorithms)
算法分为:质变算法和非质变算法。
质变算法:是指运算过程中会更改区间内的元素的内容。例如拷贝,替换,删除等等
非质变算法:是指运算过程中不会更改区间内的元素内容,例如查找、计数、遍历、寻找极值等等
**迭代器:**容器和算法之间粘合剂
提供一种方法,使之能够依序寻访某个容器所含的各个元素,而又无需暴露该容器的内部表示方式。
每个容器都有自己专属的迭代器
迭代器使用非常类似于指针,初学阶段我们可以先理解迭代器为指针
迭代器种类:
种类 | 功能 | 支持运算 |
---|---|---|
输入迭代器 | 对数据的只读访问 | 只读,支持++、==、!= |
输出迭代器 | 对数据的只写访问 | 只写,支持++ |
前向迭代器 | 读写操作,并能向前推进迭代器 | 读写,支持++、==、!= |
双向迭代器 | 读写操作,并能向前和向后操作 | 读写,支持++、–, |
随机访问迭代器 | 读写操作,可以以跳跃的方式访问任意数据,功能最强的迭代器 | 读写,支持++、–、[n]、-n、<、<=、>、>= |
常用的容器中迭代器种类为双向迭代器,和随机访问迭代器
了解STL中容器、算法、迭代器概念之后,我们利用代码感受STL的魅力
STL中最常用的容器为Vector,可以理解为数组,下面我们将学习如何向这个容器中插入数据、并遍历这个容器
容器: vector
算法: for_each
迭代器: vector<int>::iterator
示例:
#include <vector> #include <algorithm> void MyPrint(int val) { cout << val << endl; } void test01() { //创建vector容器对象,并且通过模板参数指定容器中存放的数据的类型 vector<int> v; //向容器中放数据 v.push_back(10); v.push_back(20); v.push_back(30); v.push_back(40); //每一个容器都有自己的迭代器,迭代器是用来遍历容器中的元素 //v.begin()返回迭代器,这个迭代器指向容器中第一个数据 //v.end()返回迭代器,这个迭代器指向容器元素的最后一个元素的下一个位置 //vector<int>::iterator 拿到vector<int>这种容器的迭代器类型 vector<int>::iterator pBegin = v.begin(); vector<int>::iterator pEnd = v.end(); //第一种遍历方式: while (pBegin != pEnd) { cout << *pBegin << endl; pBegin++; } //第二种遍历方式: for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << endl; } cout << endl; //第三种遍历方式: //使用STL提供标准遍历算法 头文件 algorithm for_each(v.begin(), v.end(), MyPrint); } int main() { test01(); system("pause"); return 0; }
学习目标:vector中存放自定义数据类型,并打印输出
示例:
#include <vector> #include <string> //自定义数据类型 class Person { public: Person(string name, int age) { mName = name; mAge = age; } public: string mName; int mAge; }; //存放对象 void test01() { vector<Person> v; //创建数据 Person p1("aaa", 10); Person p2("bbb", 20); Person p3("ccc", 30); Person p4("ddd", 40); Person p5("eee", 50); v.push_back(p1); v.push_back(p2); v.push_back(p3); v.push_back(p4); v.push_back(p5); for (vector<Person>::iterator it = v.begin(); it != v.end(); it++) { cout << "Name:" << (*it).mName << " Age:" << (*it).mAge << endl; } } //放对象指针 void test02() { vector<Person*> v; //创建数据 Person p1("aaa", 10); Person p2("bbb", 20); Person p3("ccc", 30); Person p4("ddd", 40); Person p5("eee", 50); v.push_back(&p1); v.push_back(&p2); v.push_back(&p3); v.push_back(&p4); v.push_back(&p5); for (vector<Person*>::iterator it = v.begin(); it != v.end(); it++) { Person * p = (*it); cout << "Name:" << p->mName << " Age:" << (*it)->mAge << endl; } } int main() { test01(); test02(); system("pause"); return 0; }
学习目标:容器中嵌套容器,我们将所有数据进行遍历输出
示例:
#include <vector> //容器嵌套容器 void test01() { vector< vector<int> > v; vector<int> v1; vector<int> v2; vector<int> v3; vector<int> v4; for (int i = 0; i < 4; i++) { v1.push_back(i + 1); v2.push_back(i + 2); v3.push_back(i + 3); v4.push_back(i + 4); } //将容器元素插入到vector v中 v.push_back(v1); v.push_back(v2); v.push_back(v3); v.push_back(v4); for (vector<vector<int>>::iterator it = v.begin(); it != v.end(); it++) { for (vector<int>::iterator vit = (*it).begin(); vit != (*it).end(); vit++) { cout << *vit << " "; } cout << endl; } } int main() { test01(); system("pause"); return 0; }
本质:
string和char * 区别:
特点:
string 类内部封装了很多成员方法
例如:查找find,拷贝copy,删除delete 替换replace,插入insert
string管理char*所分配的内存,不用担心复制越界和取值越界等,由类内部进行负责
构造函数原型:
string();
//创建一个空的字符串 例如: string str;string(const char* s);
//使用字符串s初始化string(const string& str);
//使用一个string对象初始化另一个string对象string(int n, char c);
//使用n个字符c初始化示例:
#include <string> //string构造 void test01() { string s1; //创建空字符串,调用无参构造函数 cout << "str1 = " << s1 << endl; const char* str = "hello world"; string s2(str); //把c_string转换成了string cout << "str2 = " << s2 << endl; string s3(s2); //调用拷贝构造函数 cout << "str3 = " << s3 << endl; string s4(10, 'a'); cout << "str3 = " << s3 << endl; } int main() { test01(); system("pause"); return 0; }
总结:string的多种构造方式没有可比性,灵活使用即可
功能描述:
赋值的函数原型:
string& operator=(const char* s);
//char*类型字符串 赋值给当前的字符串string& operator=(const string &s);
//把字符串s赋给当前的字符串string& operator=(char c);
//字符赋值给当前的字符串string& assign(const char *s);
//把字符串s赋给当前的字符串string& assign(const char *s, int n);
//把字符串s的前n个字符赋给当前的字符串string& assign(const string &s);
//把字符串s赋给当前字符串string& assign(int n, char c);
//用n个字符c赋给当前字符串示例:
//赋值 void test01() { string str1; str1 = "hello world"; cout << "str1 = " << str1 << endl; string str2; str2 = str1; cout << "str2 = " << str2 << endl; string str3; str3 = 'a'; cout << "str3 = " << str3 << endl; string str4; str4.assign("hello c++"); cout << "str4 = " << str4 << endl; string str5; str5.assign("hello c++",5); cout << "str5 = " << str5 << endl; string str6; str6.assign(str5); cout << "str6 = " << str6 << endl; string str7; str7.assign(5, 'x'); cout << "str7 = " << str7 << endl; } int main() { test01(); system("pause"); return 0; }
总结:
string的赋值方式很多,operator=
这种方式是比较实用的
功能描述:
函数原型:
string& operator+=(const char* str);
//重载+=操作符string& operator+=(const char c);
//重载+=操作符string& operator+=(const string& str);
//重载+=操作符string& append(const char *s);
//把字符串s连接到当前字符串结尾string& append(const char *s, int n);
//把字符串s的前n个字符连接到当前字符串结尾string& append(const string &s);
//同operator+=(const string& str)string& append(const string &s, int pos, int n);
//字符串s中从pos开始的n个字符连接到字符串结尾示例:
//字符串拼接 void test01() { string str1 = "我"; str1 += "爱玩游戏"; cout << "str1 = " << str1 << endl; str1 += ':'; cout << "str1 = " << str1 << endl; string str2 = "LOL DNF"; str1 += str2; cout << "str1 = " << str1 << endl; string str3 = "I"; str3.append(" love "); str3.append("game abcde", 4); //str3.append(str2); str3.append(str2, 4, 3); // 从下标4位置开始 ,截取3个字符,拼接到字符串末尾 cout << "str3 = " << str3 << endl; } int main() { test01(); system("pause"); return 0; }
总结:字符串拼接的重载版本很多,初学阶段记住几种即可
功能描述:
函数原型:
int find(const string& str, int pos = 0) const;
//查找str第一次出现位置,从pos开始查找int find(const char* s, int pos = 0) const;
//查找s第一次出现位置,从pos开始查找int find(const char* s, int pos, int n) const;
//从pos位置查找s的前n个字符第一次位置int find(const char c, int pos = 0) const;
//查找字符c第一次出现位置int rfind(const string& str, int pos = npos) const;
//查找str最后一次位置,从pos开始查找int rfind(const char* s, int pos = npos) const;
//查找s最后一次出现位置,从pos开始查找int rfind(const char* s, int pos, int n) const;
//从pos查找s的前n个字符最后一次位置int rfind(const char c, int pos = 0) const;
//查找字符c最后一次出现位置string& replace(int pos, int n, const string& str);
//替换从pos开始n个字符为字符串strstring& replace(int pos, int n,const char* s);
//替换从pos开始的n个字符为字符串s示例:
//查找和替换 void test01() { //查找 string str1 = "abcdefgde"; int pos = str1.find("de"); if (pos == -1) { cout << "未找到" << endl; } else { cout << "pos = " << pos << endl; } pos = str1.rfind("de"); cout << "pos = " << pos << endl; } void test02() { //替换 string str1 = "abcdefgde"; str1.replace(1, 3, "1111"); cout << "str1 = " << str1 << endl; } int main() { //test01(); //test02(); system("pause"); return 0; }
总结:
功能描述:
比较方式:
= 返回 0
> 返回 1
< 返回 -1
函数原型:
int compare(const string &s) const;
//与字符串s比较int compare(const char *s) const;
//与字符串s比较示例:
//字符串比较 void test01() { string s1 = "hello"; string s2 = "aello"; int ret = s1.compare(s2); if (ret == 0) { cout << "s1 等于 s2" << endl; } else if (ret > 0) { cout << "s1 大于 s2" << endl; } else { cout << "s1 小于 s2" << endl; } } int main() { test01(); system("pause"); return 0; }
总结:字符串对比主要是用于比较两个字符串是否相等,判断谁大谁小的意义并不是很大
string中单个字符存取方式有两种
char& operator[](int n);
//通过[]方式取字符char& at(int n);
//通过at方法获取字符示例:
void test01() { string str = "hello world"; for (int i = 0; i < str.size(); i++) { cout << str[i] << " "; } cout << endl; for (int i = 0; i < str.size(); i++) { cout << str.at(i) << " "; } cout << endl; //字符修改 str[0] = 'x'; str.at(1) = 'x'; cout << str << endl; } int main() { test01(); system("pause"); return 0; }
总结:string字符串中单个字符存取有两种方式,利用 [ ] 或 at
功能描述:
函数原型:
string& insert(int pos, const char* s);
//插入字符串string& insert(int pos, const string& str);
//插入字符串string& insert(int pos, int n, char c);
//在指定位置插入n个字符cstring& erase(int pos, int n = npos);
//删除从Pos开始的n个字符示例:
//字符串插入和删除 void test01() { string str = "hello"; str.insert(1, "111"); cout << str << endl; str.erase(1, 3); //从1号位置开始3个字符 cout << str << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**插入和删除的起始下标都是从0开始
功能描述:
函数原型:
string substr(int pos = 0, int n = npos) const;
//返回由pos开始的n个字符组成的字符串示例:
//子串 void test01() { string str = "abcdefg"; string subStr = str.substr(1, 3); cout << "subStr = " << subStr << endl; string email = "hello@sina.com"; int pos = email.find("@"); string username = email.substr(0, pos); cout << "username: " << username << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**灵活的运用求子串功能,可以在实际开发中获取有效的信息
功能:
vector与普通数组区别:
动态扩展:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HQgzyKRX-1637844500014)(assets/clip_image002.jpg)]
功能描述:
函数原型:
vector<T> v;
//采用模板实现类实现,默认构造函数vector(v.begin(), v.end());
//将v[begin(), end())区间中的元素拷贝给本身。vector(n, elem);
//构造函数将n个elem拷贝给本身。vector(const vector &vec);
//拷贝构造函数。示例:
#include <vector> void printVector(vector<int>& v) { for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } void test01() { vector<int> v1; //无参构造 for (int i = 0; i < 10; i++) { v1.push_back(i); } printVector(v1); vector<int> v2(v1.begin(), v1.end()); printVector(v2); vector<int> v3(10, 100); printVector(v3); vector<int> v4(v3); printVector(v4); } int main() { test01(); system("pause"); return 0; }
**总结:**vector的多种构造方式没有可比性,灵活使用即可
功能描述:
函数原型:
vector& operator=(const vector &vec);
//重载等号操作符
assign(beg, end);
//将[beg, end)区间中的数据拷贝赋值给本身。
assign(n, elem);
//将n个elem拷贝赋值给本身。
示例:
#include <vector> void printVector(vector<int>& v) { for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } //赋值操作 void test01() { vector<int> v1; //无参构造 for (int i = 0; i < 10; i++) { v1.push_back(i); } printVector(v1); vector<int>v2; v2 = v1; printVector(v2); vector<int>v3; v3.assign(v1.begin(), v1.end()); printVector(v3); vector<int>v4; v4.assign(10, 100); printVector(v4); } int main() { test01(); system("pause"); return 0; }
总结: vector赋值方式比较简单,使用operator=,或者assign都可以
功能描述:
函数原型:
empty();
//判断容器是否为空
capacity();
//容器的容量
size();
//返回容器中元素的个数
resize(int num);
//重新指定容器的长度为num,若容器变长,则以默认值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
resize(int num, elem);
//重新指定容器的长度为num,若容器变长,则以elem值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除
示例:
#include <vector> void printVector(vector<int>& v) { for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } void test01() { vector<int> v1; for (int i = 0; i < 10; i++) { v1.push_back(i); } printVector(v1); if (v1.empty()) { cout << "v1为空" << endl; } else { cout << "v1不为空" << endl; cout << "v1的容量 = " << v1.capacity() << endl; cout << "v1的大小 = " << v1.size() << endl; } //resize 重新指定大小 ,若指定的更大,默认用0填充新位置,可以利用重载版本替换默认填充 v1.resize(15,10); printVector(v1); //resize 重新指定大小 ,若指定的更小,超出部分元素被删除 v1.resize(5); printVector(v1); } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
push_back(ele);
//尾部插入元素elepop_back();
//删除最后一个元素insert(const_iterator pos, ele);
//迭代器指向位置pos插入元素eleinsert(const_iterator pos, int count,ele);
//迭代器指向位置pos插入count个元素eleerase(const_iterator pos);
//删除迭代器指向的元素erase(const_iterator start, const_iterator end);
//删除迭代器从start到end之间的元素clear();
//删除容器中所有元素示例:
#include <vector> void printVector(vector<int>& v) { for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } //插入和删除 void test01() { vector<int> v1; //尾插 v1.push_back(10); v1.push_back(20); v1.push_back(30); v1.push_back(40); v1.push_back(50); printVector(v1); //尾删 v1.pop_back(); printVector(v1); //插入 v1.insert(v1.begin(), 100); printVector(v1); v1.insert(v1.begin(), 2, 1000); printVector(v1); //删除 v1.erase(v1.begin()); printVector(v1); //清空 v1.erase(v1.begin(), v1.end()); v1.clear(); printVector(v1); } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
at(int idx);
//返回索引idx所指的数据operator[];
//返回索引idx所指的数据front();
//返回容器中第一个数据元素back();
//返回容器中最后一个数据元素示例:
#include <vector> void test01() { vector<int>v1; for (int i = 0; i < 10; i++) { v1.push_back(i); } for (int i = 0; i < v1.size(); i++) { cout << v1[i] << " "; } cout << endl; for (int i = 0; i < v1.size(); i++) { cout << v1.at(i) << " "; } cout << endl; cout << "v1的第一个元素为: " << v1.front() << endl; cout << "v1的最后一个元素为: " << v1.back() << endl; } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
swap(vec);
// 将vec与本身的元素互换示例:
#include <vector> void printVector(vector<int>& v) { for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } void test01() { vector<int>v1; for (int i = 0; i < 10; i++) { v1.push_back(i); } printVector(v1); vector<int>v2; for (int i = 10; i > 0; i--) { v2.push_back(i); } printVector(v2); //互换容器 cout << "互换后" << endl; v1.swap(v2); printVector(v1); printVector(v2); } void test02() { vector<int> v; for (int i = 0; i < 100000; i++) { v.push_back(i); } cout << "v的容量为:" << v.capacity() << endl; cout << "v的大小为:" << v.size() << endl; v.resize(3); cout << "v的容量为:" << v.capacity() << endl; cout << "v的大小为:" << v.size() << endl; //收缩内存 vector<int>(v).swap(v); //匿名对象 cout << "v的容量为:" << v.capacity() << endl; cout << "v的大小为:" << v.size() << endl; } int main() { test01(); test02(); system("pause"); return 0; }
总结:swap可以使两个容器互换,可以达到实用的收缩内存效果
功能描述:
函数原型:
reserve(int len);
//容器预留len个元素长度,预留位置不初始化,元素不可访问。
示例:
#include <vector> void test01() { vector<int> v; //预留空间 v.reserve(100000); int num = 0; int* p = NULL; for (int i = 0; i < 100000; i++) { v.push_back(i); if (p != &v[0]) { p = &v[0]; num++; } } cout << "num:" << num << endl; } int main() { test01(); system("pause"); return 0; }
总结:如果数据量较大,可以一开始利用reserve预留空间
功能:
deque与vector区别:
deque内部工作原理:
deque内部有个中控器,维护每段缓冲区中的内容,缓冲区中存放真实数据
中控器维护的是每个缓冲区的地址,使得使用deque时像一片连续的内存空间
功能描述:
函数原型:
deque<T>
deqT; //默认构造形式deque(beg, end);
//构造函数将[beg, end)区间中的元素拷贝给本身。deque(n, elem);
//构造函数将n个elem拷贝给本身。deque(const deque &deq);
//拷贝构造函数示例:
#include <deque> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } //deque构造 void test01() { deque<int> d1; //无参构造函数 for (int i = 0; i < 10; i++) { d1.push_back(i); } printDeque(d1); deque<int> d2(d1.begin(),d1.end()); printDeque(d2); deque<int>d3(10,100); printDeque(d3); deque<int>d4 = d3; printDeque(d4); } int main() { test01(); system("pause"); return 0; }
**总结:**deque容器和vector容器的构造方式几乎一致,灵活使用即可
功能描述:
函数原型:
deque& operator=(const deque &deq);
//重载等号操作符
assign(beg, end);
//将[beg, end)区间中的数据拷贝赋值给本身。
assign(n, elem);
//将n个elem拷贝赋值给本身。
示例:
#include <deque> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } //赋值操作 void test01() { deque<int> d1; for (int i = 0; i < 10; i++) { d1.push_back(i); } printDeque(d1); deque<int>d2; d2 = d1; printDeque(d2); deque<int>d3; d3.assign(d1.begin(), d1.end()); printDeque(d3); deque<int>d4; d4.assign(10, 100); printDeque(d4); } int main() { test01(); system("pause"); return 0; }
总结:deque赋值操作也与vector相同,需熟练掌握
功能描述:
函数原型:
deque.empty();
//判断容器是否为空
deque.size();
//返回容器中元素的个数
deque.resize(num);
//重新指定容器的长度为num,若容器变长,则以默认值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
deque.resize(num, elem);
//重新指定容器的长度为num,若容器变长,则以elem值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
示例:
#include <deque> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } //大小操作 void test01() { deque<int> d1; for (int i = 0; i < 10; i++) { d1.push_back(i); } printDeque(d1); //判断容器是否为空 if (d1.empty()) { cout << "d1为空!" << endl; } else { cout << "d1不为空!" << endl; //统计大小 cout << "d1的大小为:" << d1.size() << endl; } //重新指定大小 d1.resize(15, 1); printDeque(d1); d1.resize(5); printDeque(d1); } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
两端插入操作:
push_back(elem);
//在容器尾部添加一个数据push_front(elem);
//在容器头部插入一个数据pop_back();
//删除容器最后一个数据pop_front();
//删除容器第一个数据指定位置操作:
insert(pos,elem);
//在pos位置插入一个elem元素的拷贝,返回新数据的位置。
insert(pos,n,elem);
//在pos位置插入n个elem数据,无返回值。
insert(pos,beg,end);
//在pos位置插入[beg,end)区间的数据,无返回值。
clear();
//清空容器的所有数据
erase(beg,end);
//删除[beg,end)区间的数据,返回下一个数据的位置。
erase(pos);
//删除pos位置的数据,返回下一个数据的位置。
示例:
#include <deque> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } //两端操作 void test01() { deque<int> d; //尾插 d.push_back(10); d.push_back(20); //头插 d.push_front(100); d.push_front(200); printDeque(d); //尾删 d.pop_back(); //头删 d.pop_front(); printDeque(d); } //插入 void test02() { deque<int> d; d.push_back(10); d.push_back(20); d.push_front(100); d.push_front(200); printDeque(d); d.insert(d.begin(), 1000); printDeque(d); d.insert(d.begin(), 2,10000); printDeque(d); deque<int>d2; d2.push_back(1); d2.push_back(2); d2.push_back(3); d.insert(d.begin(), d2.begin(), d2.end()); printDeque(d); } //删除 void test03() { deque<int> d; d.push_back(10); d.push_back(20); d.push_front(100); d.push_front(200); printDeque(d); d.erase(d.begin()); printDeque(d); d.erase(d.begin(), d.end()); d.clear(); printDeque(d); } int main() { //test01(); //test02(); test03(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
at(int idx);
//返回索引idx所指的数据operator[];
//返回索引idx所指的数据front();
//返回容器中第一个数据元素back();
//返回容器中最后一个数据元素示例:
#include <deque> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } //数据存取 void test01() { deque<int> d; d.push_back(10); d.push_back(20); d.push_front(100); d.push_front(200); for (int i = 0; i < d.size(); i++) { cout << d[i] << " "; } cout << endl; for (int i = 0; i < d.size(); i++) { cout << d.at(i) << " "; } cout << endl; cout << "front:" << d.front() << endl; cout << "back:" << d.back() << endl; } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
算法:
sort(iterator beg, iterator end)
//对beg和end区间内元素进行排序示例:
#include <deque> #include <algorithm> void printDeque(const deque<int>& d) { for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) { cout << *it << " "; } cout << endl; } void test01() { deque<int> d; d.push_back(10); d.push_back(20); d.push_front(100); d.push_front(200); printDeque(d); sort(d.begin(), d.end()); printDeque(d); } int main() { test01(); system("pause"); return 0; }
总结:sort算法非常实用,使用时包含头文件 algorithm即可
有5名选手:选手ABCDE,10个评委分别对每一名选手打分,去除最高分,去除评委中最低分,取平均分。
示例代码:
//选手类 class Person { public: Person(string name, int score) { this->m_Name = name; this->m_Score = score; } string m_Name; //姓名 int m_Score; //平均分 }; void createPerson(vector<Person>&v) { string nameSeed = "ABCDE"; for (int i = 0; i < 5; i++) { string name = "选手"; name += nameSeed[i]; int score = 0; Person p(name, score); //将创建的person对象 放入到容器中 v.push_back(p); } } //打分 void setScore(vector<Person>&v) { for (vector<Person>::iterator it = v.begin(); it != v.end(); it++) { //将评委的分数 放入到deque容器中 deque<int>d; for (int i = 0; i < 10; i++) { int score = rand() % 41 + 60; // 60 ~ 100 d.push_back(score); } //cout << "选手: " << it->m_Name << " 打分: " << endl; //for (deque<int>::iterator dit = d.begin(); dit != d.end(); dit++) //{ // cout << *dit << " "; //} //cout << endl; //排序 sort(d.begin(), d.end()); //去除最高和最低分 d.pop_back(); d.pop_front(); //取平均分 int sum = 0; for (deque<int>::iterator dit = d.begin(); dit != d.end(); dit++) { sum += *dit; //累加每个评委的分数 } int avg = sum / d.size(); //将平均分 赋值给选手身上 it->m_Score = avg; } } void showScore(vector<Person>&v) { for (vector<Person>::iterator it = v.begin(); it != v.end(); it++) { cout << "姓名: " << it->m_Name << " 平均分: " << it->m_Score << endl; } } int main() { //随机数种子 srand((unsigned int)time(NULL)); //1、创建5名选手 vector<Person>v; //存放选手容器 createPerson(v); //测试 //for (vector<Person>::iterator it = v.begin(); it != v.end(); it++) //{ // cout << "姓名: " << (*it).m_Name << " 分数: " << (*it).m_Score << endl; //} //2、给5名选手打分 setScore(v); //3、显示最后得分 showScore(v); system("pause"); return 0; }
总结: 选取不同的容器操作数据,可以提升代码的效率
概念:stack是一种先进后出(First In Last Out,FILO)的数据结构,它只有一个出口
栈中只有顶端的元素才可以被外界使用,因此栈不允许有遍历行为
栈中进入数据称为 — 入栈 push
栈中弹出数据称为 — 出栈 pop
生活中的栈:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wUbRiDiE-1637844500018)(assets/clip_image002-1547605111510.jpg)]
功能描述:栈容器常用的对外接口
构造函数:
stack<T> stk;
//stack采用模板类实现, stack对象的默认构造形式stack(const stack &stk);
//拷贝构造函数赋值操作:
stack& operator=(const stack &stk);
//重载等号操作符数据存取:
push(elem);
//向栈顶添加元素pop();
//从栈顶移除第一个元素top();
//返回栈顶元素大小操作:
empty();
//判断堆栈是否为空size();
//返回栈的大小示例:
#include <stack> //栈容器常用接口 void test01() { //创建栈容器 栈容器必须符合先进后出 stack<int> s; //向栈中添加元素,叫做 压栈 入栈 s.push(10); s.push(20); s.push(30); while (!s.empty()) { //输出栈顶元素 cout << "栈顶元素为: " << s.top() << endl; //弹出栈顶元素 s.pop(); } cout << "栈的大小为:" << s.size() << endl; } int main() { test01(); system("pause"); return 0; }
总结:
概念:Queue是一种先进先出(First In First Out,FIFO)的数据结构,它有两个出口
队列容器允许从一端新增元素,从另一端移除元素
队列中只有队头和队尾才可以被外界使用,因此队列不允许有遍历行为
队列中进数据称为 — 入队 push
队列中出数据称为 — 出队 pop
生活中的队列:
功能描述:栈容器常用的对外接口
构造函数:
queue<T> que;
//queue采用模板类实现,queue对象的默认构造形式queue(const queue &que);
//拷贝构造函数赋值操作:
queue& operator=(const queue &que);
//重载等号操作符数据存取:
push(elem);
//往队尾添加元素pop();
//从队头移除第一个元素back();
//返回最后一个元素front();
//返回第一个元素大小操作:
empty();
//判断堆栈是否为空size();
//返回栈的大小示例:
#include <queue> #include <string> class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; } string m_Name; int m_Age; }; void test01() { //创建队列 queue<Person> q; //准备数据 Person p1("唐僧", 30); Person p2("孙悟空", 1000); Person p3("猪八戒", 900); Person p4("沙僧", 800); //向队列中添加元素 入队操作 q.push(p1); q.push(p2); q.push(p3); q.push(p4); //队列不提供迭代器,更不支持随机访问 while (!q.empty()) { //输出队头元素 cout << "队头元素-- 姓名: " << q.front().m_Name << " 年龄: "<< q.front().m_Age << endl; cout << "队尾元素-- 姓名: " << q.back().m_Name << " 年龄: " << q.back().m_Age << endl; cout << endl; //弹出队头元素 q.pop(); } cout << "队列大小为:" << q.size() << endl; } int main() { test01(); system("pause"); return 0; }
总结:
**功能:**将数据进行链式存储
链表(list)是一种物理存储单元上非连续的存储结构,数据元素的逻辑顺序是通过链表中的指针链接实现的
链表的组成:链表由一系列结点组成
结点的组成:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域
STL中的链表是一个双向循环链表
由于链表的存储方式并不是连续的内存空间,因此链表list中的迭代器只支持前移和后移,属于双向迭代器
list的优点:
list的缺点:
List有一个重要的性质,插入操作和删除操作都不会造成原有list迭代器的失效,这在vector是不成立的。
总结:STL中List和vector是两个最常被使用的容器,各有优缺点
功能描述:
函数原型:
list<T> lst;
//list采用采用模板类实现,对象的默认构造形式:list(beg,end);
//构造函数将[beg, end)区间中的元素拷贝给本身。list(n,elem);
//构造函数将n个elem拷贝给本身。list(const list &lst);
//拷贝构造函数。示例:
#include <list> void printList(const list<int>& L) { for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) { cout << *it << " "; } cout << endl; } void test01() { list<int>L1; L1.push_back(10); L1.push_back(20); L1.push_back(30); L1.push_back(40); printList(L1); list<int>L2(L1.begin(),L1.end()); printList(L2); list<int>L3(L2); printList(L3); list<int>L4(10, 1000); printList(L4); } int main() { test01(); system("pause"); return 0; }
总结:list构造方式同其他几个STL常用容器,熟练掌握即可
功能描述:
函数原型:
assign(beg, end);
//将[beg, end)区间中的数据拷贝赋值给本身。assign(n, elem);
//将n个elem拷贝赋值给本身。list& operator=(const list &lst);
//重载等号操作符swap(lst);
//将lst与本身的元素互换。示例:
#include <list> void printList(const list<int>& L) { for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) { cout << *it << " "; } cout << endl; } //赋值和交换 void test01() { list<int>L1; L1.push_back(10); L1.push_back(20); L1.push_back(30); L1.push_back(40); printList(L1); //赋值 list<int>L2; L2 = L1; printList(L2); list<int>L3; L3.assign(L2.begin(), L2.end()); printList(L3); list<int>L4; L4.assign(10, 100); printList(L4); } //交换 void test02() { list<int>L1; L1.push_back(10); L1.push_back(20); L1.push_back(30); L1.push_back(40); list<int>L2; L2.assign(10, 100); cout << "交换前: " << endl; printList(L1); printList(L2); cout << endl; L1.swap(L2); cout << "交换后: " << endl; printList(L1); printList(L2); } int main() { //test01(); test02(); system("pause"); return 0; }
总结:list赋值和交换操作能够灵活运用即可
功能描述:
函数原型:
size();
//返回容器中元素的个数
empty();
//判断容器是否为空
resize(num);
//重新指定容器的长度为num,若容器变长,则以默认值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
resize(num, elem);
//重新指定容器的长度为num,若容器变长,则以elem值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
示例:
#include <list> void printList(const list<int>& L) { for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) { cout << *it << " "; } cout << endl; } //大小操作 void test01() { list<int>L1; L1.push_back(10); L1.push_back(20); L1.push_back(30); L1.push_back(40); if (L1.empty()) { cout << "L1为空" << endl; } else { cout << "L1不为空" << endl; cout << "L1的大小为: " << L1.size() << endl; } //重新指定大小 L1.resize(10); printList(L1); L1.resize(2); printList(L1); } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
示例:
#include <list> void printList(const list<int>& L) { for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) { cout << *it << " "; } cout << endl; } //插入和删除 void test01() { list<int> L; //尾插 L.push_back(10); L.push_back(20); L.push_back(30); //头插 L.push_front(100); L.push_front(200); L.push_front(300); printList(L); //尾删 L.pop_back(); printList(L); //头删 L.pop_front(); printList(L); //插入 list<int>::iterator it = L.begin(); L.insert(++it, 1000); printList(L); //删除 it = L.begin(); L.erase(++it); printList(L); //移除 L.push_back(10000); L.push_back(10000); L.push_back(10000); printList(L); L.remove(10000); printList(L); //清空 L.clear(); printList(L); } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
front();
//返回第一个元素。back();
//返回最后一个元素。示例:
#include <list> //数据存取 void test01() { list<int>L1; L1.push_back(10); L1.push_back(20); L1.push_back(30); L1.push_back(40); //cout << L1.at(0) << endl;//错误 不支持at访问数据 //cout << L1[0] << endl; //错误 不支持[]方式访问数据 cout << "第一个元素为: " << L1.front() << endl; cout << "最后一个元素为: " << L1.back() << endl; //list容器的迭代器是双向迭代器,不支持随机访问 list<int>::iterator it = L1.begin(); //it = it + 1;//错误,不可以跳跃访问,即使是+1 } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
reverse();
//反转链表sort();
//链表排序示例:
void printList(const list<int>& L) { for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) { cout << *it << " "; } cout << endl; } bool myCompare(int val1 , int val2) { return val1 > val2; } //反转和排序 void test01() { list<int> L; L.push_back(90); L.push_back(30); L.push_back(20); L.push_back(70); printList(L); //反转容器的元素 L.reverse(); printList(L); //排序 L.sort(); //默认的排序规则 从小到大 printList(L); L.sort(myCompare); //指定规则,从大到小 printList(L); } int main() { test01(); system("pause"); return 0; }
总结:
案例描述:将Person自定义数据类型进行排序,Person中属性有姓名、年龄、身高
排序规则:按照年龄进行升序,如果年龄相同按照身高进行降序
示例:
#include <list> #include <string> class Person { public: Person(string name, int age , int height) { m_Name = name; m_Age = age; m_Height = height; } public: string m_Name; //姓名 int m_Age; //年龄 int m_Height; //身高 }; bool ComparePerson(Person& p1, Person& p2) { if (p1.m_Age == p2.m_Age) { return p1.m_Height > p2.m_Height; } else { return p1.m_Age < p2.m_Age; } } void test01() { list<Person> L; Person p1("刘备", 35 , 175); Person p2("曹操", 45 , 180); Person p3("孙权", 40 , 170); Person p4("赵云", 25 , 190); Person p5("张飞", 35 , 160); Person p6("关羽", 35 , 200); L.push_back(p1); L.push_back(p2); L.push_back(p3); L.push_back(p4); L.push_back(p5); L.push_back(p6); for (list<Person>::iterator it = L.begin(); it != L.end(); it++) { cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age << " 身高: " << it->m_Height << endl; } cout << "---------------------------------" << endl; L.sort(ComparePerson); //排序 for (list<Person>::iterator it = L.begin(); it != L.end(); it++) { cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age << " 身高: " << it->m_Height << endl; } } int main() { test01(); system("pause"); return 0; }
总结:
对于自定义数据类型,必须要指定排序规则,否则编译器不知道如何进行排序
高级排序只是在排序规则上再进行一次逻辑规则制定,并不复杂
简介:
本质:
set和multiset区别:
功能描述:创建set容器以及赋值
构造:
set<T> st;
//默认构造函数:set(const set &st);
//拷贝构造函数赋值:
set& operator=(const set &st);
//重载等号操作符示例:
#include <set> void printSet(set<int> & s) { for (set<int>::iterator it = s.begin(); it != s.end(); it++) { cout << *it << " "; } cout << endl; } //构造和赋值 void test01() { set<int> s1; s1.insert(10); s1.insert(30); s1.insert(20); s1.insert(40); printSet(s1); //拷贝构造 set<int>s2(s1); printSet(s2); //赋值 set<int>s3; s3 = s2; printSet(s3); } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
size();
//返回容器中元素的数目empty();
//判断容器是否为空swap(st);
//交换两个集合容器示例:
#include <set> void printSet(set<int> & s) { for (set<int>::iterator it = s.begin(); it != s.end(); it++) { cout << *it << " "; } cout << endl; } //大小 void test01() { set<int> s1; s1.insert(10); s1.insert(30); s1.insert(20); s1.insert(40); if (s1.empty()) { cout << "s1为空" << endl; } else { cout << "s1不为空" << endl; cout << "s1的大小为: " << s1.size() << endl; } } //交换 void test02() { set<int> s1; s1.insert(10); s1.insert(30); s1.insert(20); s1.insert(40); set<int> s2; s2.insert(100); s2.insert(300); s2.insert(200); s2.insert(400); cout << "交换前" << endl; printSet(s1); printSet(s2); cout << endl; cout << "交换后" << endl; s1.swap(s2); printSet(s1); printSet(s2); } int main() { //test01(); test02(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
insert(elem);
//在容器中插入元素。clear();
//清除所有元素erase(pos);
//删除pos迭代器所指的元素,返回下一个元素的迭代器。erase(beg, end);
//删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。erase(elem);
//删除容器中值为elem的元素。示例:
#include <set> void printSet(set<int> & s) { for (set<int>::iterator it = s.begin(); it != s.end(); it++) { cout << *it << " "; } cout << endl; } //插入和删除 void test01() { set<int> s1; //插入 s1.insert(10); s1.insert(30); s1.insert(20); s1.insert(40); printSet(s1); //删除 s1.erase(s1.begin()); printSet(s1); s1.erase(30); printSet(s1); //清空 //s1.erase(s1.begin(), s1.end()); s1.clear(); printSet(s1); } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
find(key);
//查找key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();count(key);
//统计key的元素个数示例:
#include <set> //查找和统计 void test01() { set<int> s1; //插入 s1.insert(10); s1.insert(30); s1.insert(20); s1.insert(40); //查找 set<int>::iterator pos = s1.find(30); if (pos != s1.end()) { cout << "找到了元素 : " << *pos << endl; } else { cout << "未找到元素" << endl; } //统计 int num = s1.count(30); cout << "num = " << num << endl; } int main() { test01(); system("pause"); return 0; }
总结:
学习目标:
区别:
示例:
#include <set> //set和multiset区别 void test01() { set<int> s; pair<set<int>::iterator, bool> ret = s.insert(10); if (ret.second) { cout << "第一次插入成功!" << endl; } else { cout << "第一次插入失败!" << endl; } ret = s.insert(10); if (ret.second) { cout << "第二次插入成功!" << endl; } else { cout << "第二次插入失败!" << endl; } //multiset multiset<int> ms; ms.insert(10); ms.insert(10); for (multiset<int>::iterator it = ms.begin(); it != ms.end(); it++) { cout << *it << " "; } cout << endl; } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
两种创建方式:
pair<type, type> p ( value1, value2 );
pair<type, type> p = make_pair( value1, value2 );
示例:
#include <string> //对组创建 void test01() { pair<string, int> p(string("Tom"), 20); cout << "姓名: " << p.first << " 年龄: " << p.second << endl; pair<string, int> p2 = make_pair("Jerry", 10); cout << "姓名: " << p2.first << " 年龄: " << p2.second << endl; } int main() { test01(); system("pause"); return 0; }
总结:
两种方式都可以创建对组,记住一种即可
学习目标:
主要技术点:
示例一 set存放内置数据类型
#include <set> class MyCompare { public: bool operator()(int v1, int v2) { return v1 > v2; } }; void test01() { set<int> s1; s1.insert(10); s1.insert(40); s1.insert(20); s1.insert(30); s1.insert(50); //默认从小到大 for (set<int>::iterator it = s1.begin(); it != s1.end(); it++) { cout << *it << " "; } cout << endl; //指定排序规则 set<int,MyCompare> s2; s2.insert(10); s2.insert(40); s2.insert(20); s2.insert(30); s2.insert(50); for (set<int, MyCompare>::iterator it = s2.begin(); it != s2.end(); it++) { cout << *it << " "; } cout << endl; } int main() { test01(); system("pause"); return 0; }
总结:利用仿函数可以指定set容器的排序规则
示例二 set存放自定义数据类型
#include <set> #include <string> class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; } string m_Name; int m_Age; }; class comparePerson { public: bool operator()(const Person& p1, const Person &p2) { //按照年龄进行排序 降序 return p1.m_Age > p2.m_Age; } }; void test01() { set<Person, comparePerson> s; Person p1("刘备", 23); Person p2("关羽", 27); Person p3("张飞", 25); Person p4("赵云", 21); s.insert(p1); s.insert(p2); s.insert(p3); s.insert(p4); for (set<Person, comparePerson>::iterator it = s.begin(); it != s.end(); it++) { cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age << endl; } } int main() { test01(); system("pause"); return 0; }
总结:
对于自定义数据类型,set必须指定排序规则才可以插入数据
简介:
本质:
优点:
map和multimap区别:
功能描述:
函数原型:
构造:
map<T1, T2> mp;
//map默认构造函数:map(const map &mp);
//拷贝构造函数赋值:
map& operator=(const map &mp);
//重载等号操作符示例:
#include <map> void printMap(map<int,int>&m) { for (map<int, int>::iterator it = m.begin(); it != m.end(); it++) { cout << "key = " << it->first << " value = " << it->second << endl; } cout << endl; } void test01() { map<int,int>m; //默认构造 m.insert(pair<int, int>(1, 10)); m.insert(pair<int, int>(2, 20)); m.insert(pair<int, int>(3, 30)); printMap(m); map<int, int>m2(m); //拷贝构造 printMap(m2); map<int, int>m3; m3 = m2; //赋值 printMap(m3); } int main() { test01(); system("pause"); return 0; }
总结:map中所有元素都是成对出现,插入数据时候要使用对组
功能描述:
函数原型:
size();
//返回容器中元素的数目empty();
//判断容器是否为空swap(st);
//交换两个集合容器示例:
#include <map> void printMap(map<int,int>&m) { for (map<int, int>::iterator it = m.begin(); it != m.end(); it++) { cout << "key = " << it->first << " value = " << it->second << endl; } cout << endl; } void test01() { map<int, int>m; m.insert(pair<int, int>(1, 10)); m.insert(pair<int, int>(2, 20)); m.insert(pair<int, int>(3, 30)); if (m.empty()) { cout << "m为空" << endl; } else { cout << "m不为空" << endl; cout << "m的大小为: " << m.size() << endl; } } //交换 void test02() { map<int, int>m; m.insert(pair<int, int>(1, 10)); m.insert(pair<int, int>(2, 20)); m.insert(pair<int, int>(3, 30)); map<int, int>m2; m2.insert(pair<int, int>(4, 100)); m2.insert(pair<int, int>(5, 200)); m2.insert(pair<int, int>(6, 300)); cout << "交换前" << endl; printMap(m); printMap(m2); cout << "交换后" << endl; m.swap(m2); printMap(m); printMap(m2); } int main() { test01(); test02(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
insert(elem);
//在容器中插入元素。clear();
//清除所有元素erase(pos);
//删除pos迭代器所指的元素,返回下一个元素的迭代器。erase(beg, end);
//删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。erase(key);
//删除容器中值为key的元素。示例:
#include <map> void printMap(map<int,int>&m) { for (map<int, int>::iterator it = m.begin(); it != m.end(); it++) { cout << "key = " << it->first << " value = " << it->second << endl; } cout << endl; } void test01() { //插入 map<int, int> m; //第一种插入方式 m.insert(pair<int, int>(1, 10)); //第二种插入方式 m.insert(make_pair(2, 20)); //第三种插入方式 m.insert(map<int, int>::value_type(3, 30)); //第四种插入方式 m[4] = 40; printMap(m); //删除 m.erase(m.begin()); printMap(m); m.erase(3); printMap(m); //清空 m.erase(m.begin(),m.end()); m.clear(); printMap(m); } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
find(key);
//查找key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();count(key);
//统计key的元素个数示例:
#include <map> //查找和统计 void test01() { map<int, int>m; m.insert(pair<int, int>(1, 10)); m.insert(pair<int, int>(2, 20)); m.insert(pair<int, int>(3, 30)); //查找 map<int, int>::iterator pos = m.find(3); if (pos != m.end()) { cout << "找到了元素 key = " << (*pos).first << " value = " << (*pos).second << endl; } else { cout << "未找到元素" << endl; } //统计 int num = m.count(3); cout << "num = " << num << endl; } int main() { test01(); system("pause"); return 0; }
总结:
学习目标:
主要技术点:
示例:
#include <map> class MyCompare { public: bool operator()(int v1, int v2) { return v1 > v2; } }; void test01() { //默认从小到大排序 //利用仿函数实现从大到小排序 map<int, int, MyCompare> m; m.insert(make_pair(1, 10)); m.insert(make_pair(2, 20)); m.insert(make_pair(3, 30)); m.insert(make_pair(4, 40)); m.insert(make_pair(5, 50)); for (map<int, int, MyCompare>::iterator it = m.begin(); it != m.end(); it++) { cout << "key:" << it->first << " value:" << it->second << endl; } } int main() { test01(); system("pause"); return 0; }
总结:
案例代码:
#include<iostream> using namespace std; #include <vector> #include <string> #include <map> #include <ctime> /* - 公司今天招聘了10个员工(ABCDEFGHIJ),10名员工进入公司之后,需要指派员工在那个部门工作 - 员工信息有: 姓名 工资组成;部门分为:策划、美术、研发 - 随机给10名员工分配部门和工资 - 通过multimap进行信息的插入 key(部门编号) value(员工) - 分部门显示员工信息 */ #define CEHUA 0 #define MEISHU 1 #define YANFA 2 class Worker { public: string m_Name; int m_Salary; }; void createWorker(vector<Worker>&v) { string nameSeed = "ABCDEFGHIJ"; for (int i = 0; i < 10; i++) { Worker worker; worker.m_Name = "员工"; worker.m_Name += nameSeed[i]; worker.m_Salary = rand() % 10000 + 10000; // 10000 ~ 19999 //将员工放入到容器中 v.push_back(worker); } } //员工分组 void setGroup(vector<Worker>&v,multimap<int,Worker>&m) { for (vector<Worker>::iterator it = v.begin(); it != v.end(); it++) { //产生随机部门编号 int deptId = rand() % 3; // 0 1 2 //将员工插入到分组中 //key部门编号,value具体员工 m.insert(make_pair(deptId, *it)); } } void showWorkerByGourp(multimap<int,Worker>&m) { // 0 A B C 1 D E 2 F G ... cout << "策划部门:" << endl; multimap<int,Worker>::iterator pos = m.find(CEHUA); int count = m.count(CEHUA); // 统计具体人数 int index = 0; for (; pos != m.end() && index < count; pos++ , index++) { cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl; } cout << "----------------------" << endl; cout << "美术部门: " << endl; pos = m.find(MEISHU); count = m.count(MEISHU); // 统计具体人数 index = 0; for (; pos != m.end() && index < count; pos++, index++) { cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl; } cout << "----------------------" << endl; cout << "研发部门: " << endl; pos = m.find(YANFA); count = m.count(YANFA); // 统计具体人数 index = 0; for (; pos != m.end() && index < count; pos++, index++) { cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl; } } int main() { srand((unsigned int)time(NULL)); //1、创建员工 vector<Worker>vWorker; createWorker(vWorker); //2、员工分组 multimap<int, Worker>mWorker; setGroup(vWorker, mWorker); //3、分组显示员工 showWorkerByGourp(mWorker); 测试 //for (vector<Worker>::iterator it = vWorker.begin(); it != vWorker.end(); it++) //{ // cout << "姓名: " << it->m_Name << " 工资: " << it->m_Salary << endl; //} system("pause"); return 0; }
总结:
概念:
本质:
函数对象(仿函数)是一个类,不是一个函数
特点:
示例:
#include <string> //1、函数对象在使用时,可以像普通函数那样调用, 可以有参数,可以有返回值 class MyAdd { public : int operator()(int v1,int v2) { return v1 + v2; } }; void test01() { MyAdd myAdd; cout << myAdd(10, 10) << endl; } //2、函数对象可以有自己的状态 class MyPrint { public: MyPrint() { count = 0; } void operator()(string test) { cout << test << endl; count++; //统计使用次数 } int count; //内部自己的状态 }; void test02() { MyPrint myPrint; myPrint("hello world"); myPrint("hello world"); myPrint("hello world"); cout << "myPrint调用次数为: " << myPrint.count << endl; } //3、函数对象可以作为参数传递 void doPrint(MyPrint &mp , string test) { mp(test); } void test03() { MyPrint myPrint; doPrint(myPrint, "Hello C++"); } int main() { //test01(); //test02(); test03(); system("pause"); return 0; }
总结:
概念:
示例:
#include <vector> #include <algorithm> //1.一元谓词 struct GreaterFive{ bool operator()(int val) { return val > 5; } }; void test01() { vector<int> v; for (int i = 0; i < 10; i++) { v.push_back(i); } vector<int>::iterator it = find_if(v.begin(), v.end(), GreaterFive()); if (it == v.end()) { cout << "没找到!" << endl; } else { cout << "找到:" << *it << endl; } } int main() { test01(); system("pause"); return 0; }
总结:参数只有一个的谓词,称为一元谓词
示例:
#include <vector> #include <algorithm> //二元谓词 class MyCompare { public: bool operator()(int num1, int num2) { return num1 > num2; } }; void test01() { vector<int> v; v.push_back(10); v.push_back(40); v.push_back(20); v.push_back(30); v.push_back(50); //默认从小到大 sort(v.begin(), v.end()); for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; cout << "----------------------------" << endl; //使用函数对象改变算法策略,排序从大到小 sort(v.begin(), v.end(), MyCompare()); for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } int main() { test01(); system("pause"); return 0; }
总结:参数只有两个的谓词,称为二元谓词
概念:
分类:
算术仿函数
关系仿函数
逻辑仿函数
用法:
#include<functional>
功能描述:
仿函数原型:
template<class T> T plus<T>
//加法仿函数template<class T> T minus<T>
//减法仿函数template<class T> T multiplies<T>
//乘法仿函数template<class T> T divides<T>
//除法仿函数template<class T> T modulus<T>
//取模仿函数template<class T> T negate<T>
//取反仿函数示例:
#include <functional> //negate void test01() { negate<int> n; cout << n(50) << endl; } //plus void test02() { plus<int> p; cout << p(10, 20) << endl; } int main() { test01(); test02(); system("pause"); return 0; }
总结:使用内建函数对象时,需要引入头文件 #include <functional>
功能描述:
仿函数原型:
template<class T> bool equal_to<T>
//等于template<class T> bool not_equal_to<T>
//不等于template<class T> bool greater<T>
//大于template<class T> bool greater_equal<T>
//大于等于template<class T> bool less<T>
//小于template<class T> bool less_equal<T>
//小于等于示例:
#include <functional> #include <vector> #include <algorithm> class MyCompare { public: bool operator()(int v1,int v2) { return v1 > v2; } }; void test01() { vector<int> v; v.push_back(10); v.push_back(30); v.push_back(50); v.push_back(40); v.push_back(20); for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; //自己实现仿函数 //sort(v.begin(), v.end(), MyCompare()); //STL内建仿函数 大于仿函数 sort(v.begin(), v.end(), greater<int>()); for (vector<int>::iterator it = v.begin(); it != v.end(); it++) { cout << *it << " "; } cout << endl; } int main() { test01(); system("pause"); return 0; }
总结:关系仿函数中最常用的就是greater<>大于
功能描述:
函数原型:
template<class T> bool logical_and<T>
//逻辑与template<class T> bool logical_or<T>
//逻辑或template<class T> bool logical_not<T>
//逻辑非示例:
#include <vector> #include <functional> #include <algorithm> void test01() { vector<bool> v; v.push_back(true); v.push_back(false); v.push_back(true); v.push_back(false); for (vector<bool>::iterator it = v.begin();it!= v.end();it++) { cout << *it << " "; } cout << endl; //逻辑非 将v容器搬运到v2中,并执行逻辑非运算 vector<bool> v2; v2.resize(v.size()); transform(v.begin(), v.end(), v2.begin(), logical_not<bool>()); for (vector<bool>::iterator it = v2.begin(); it != v2.end(); it++) { cout << *it << " "; } cout << endl; } int main() { test01(); system("pause"); return 0; }
总结:逻辑仿函数实际应用较少,了解即可
概述:
算法主要是由头文件<algorithm>
<functional>
<numeric>
组成。
<algorithm>
是所有STL头文件中最大的一个,范围涉及到比较、 交换、查找、遍历操作、复制、修改等等
<numeric>
体积很小,只包括几个在序列上面进行简单数学运算的模板函数
<functional>
定义了一些模板类,用以声明函数对象。
学习目标:
算法简介:
for_each
//遍历容器transform
//搬运容器到另一个容器中功能描述:
函数原型:
for_each(iterator beg, iterator end, _func);
// 遍历算法 遍历容器元素
// beg 开始迭代器
// end 结束迭代器
// _func 函数或者函数对象
示例:
#include <algorithm> #include <vector> //普通函数 void print01(int val) { cout << val << " "; } //函数对象 class print02 { public: void operator()(int val) { cout << val << " "; } }; //for_each算法基本用法 void test01() { vector<int> v; for (int i = 0; i < 10; i++) { v.push_back(i); } //遍历算法 for_each(v.begin(), v.end(), print01); cout << endl; for_each(v.begin(), v.end(), print02()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**for_each在实际开发中是最常用遍历算法,需要熟练掌握
功能描述:
函数原型:
transform(iterator beg1, iterator end1, iterator beg2, _func);
//beg1 源容器开始迭代器
//end1 源容器结束迭代器
//beg2 目标容器开始迭代器
//_func 函数或者函数对象
示例:
#include<vector> #include<algorithm> //常用遍历算法 搬运 transform class TransForm { public: int operator()(int val) { return val; } }; class MyPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int>v; for (int i = 0; i < 10; i++) { v.push_back(i); } vector<int>vTarget; //目标容器 vTarget.resize(v.size()); // 目标容器需要提前开辟空间 transform(v.begin(), v.end(), vTarget.begin(), TransForm()); for_each(vTarget.begin(), vTarget.end(), MyPrint()); } int main() { test01(); system("pause"); return 0; }
总结: 搬运的目标容器必须要提前开辟空间,否则无法正常搬运
学习目标:
算法简介:
find
//查找元素find_if
//按条件查找元素adjacent_find
//查找相邻重复元素binary_search
//二分查找法count
//统计元素个数count_if
//按条件统计元素个数功能描述:
函数原型:
find(iterator beg, iterator end, value);
// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置
// beg 开始迭代器
// end 结束迭代器
// value 查找的元素
示例:
#include <algorithm> #include <vector> #include <string> void test01() { vector<int> v; for (int i = 0; i < 10; i++) { v.push_back(i + 1); } //查找容器中是否有 5 这个元素 vector<int>::iterator it = find(v.begin(), v.end(), 5); if (it == v.end()) { cout << "没有找到!" << endl; } else { cout << "找到:" << *it << endl; } } class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; } //重载== bool operator==(const Person& p) { if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) { return true; } return false; } public: string m_Name; int m_Age; }; void test02() { vector<Person> v; //创建数据 Person p1("aaa", 10); Person p2("bbb", 20); Person p3("ccc", 30); Person p4("ddd", 40); v.push_back(p1); v.push_back(p2); v.push_back(p3); v.push_back(p4); vector<Person>::iterator it = find(v.begin(), v.end(), p2); if (it == v.end()) { cout << "没有找到!" << endl; } else { cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl; } }
总结: 利用find可以在容器中找指定的元素,返回值是迭代器
功能描述:
函数原型:
find_if(iterator beg, iterator end, _Pred);
// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置
// beg 开始迭代器
// end 结束迭代器
// _Pred 函数或者谓词(返回bool类型的仿函数)
示例:
#include <algorithm> #include <vector> #include <string> //内置数据类型 class GreaterFive { public: bool operator()(int val) { return val > 5; } }; void test01() { vector<int> v; for (int i = 0; i < 10; i++) { v.push_back(i + 1); } vector<int>::iterator it = find_if(v.begin(), v.end(), GreaterFive()); if (it == v.end()) { cout << "没有找到!" << endl; } else { cout << "找到大于5的数字:" << *it << endl; } } //自定义数据类型 class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; } public: string m_Name; int m_Age; }; class Greater20 { public: bool operator()(Person &p) { return p.m_Age > 20; } }; void test02() { vector<Person> v; //创建数据 Person p1("aaa", 10); Person p2("bbb", 20); Person p3("ccc", 30); Person p4("ddd", 40); v.push_back(p1); v.push_back(p2); v.push_back(p3); v.push_back(p4); vector<Person>::iterator it = find_if(v.begin(), v.end(), Greater20()); if (it == v.end()) { cout << "没有找到!" << endl; } else { cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl; } } int main() { //test01(); test02(); system("pause"); return 0; }
总结:find_if按条件查找使查找更加灵活,提供的仿函数可以改变不同的策略
功能描述:
函数原型:
adjacent_find(iterator beg, iterator end);
// 查找相邻重复元素,返回相邻元素的第一个位置的迭代器
// beg 开始迭代器
// end 结束迭代器
示例:
#include <algorithm> #include <vector> void test01() { vector<int> v; v.push_back(1); v.push_back(2); v.push_back(5); v.push_back(2); v.push_back(4); v.push_back(4); v.push_back(3); //查找相邻重复元素 vector<int>::iterator it = adjacent_find(v.begin(), v.end()); if (it == v.end()) { cout << "找不到!" << endl; } else { cout << "找到相邻重复元素为:" << *it << endl; } }
总结:面试题中如果出现查找相邻重复元素,记得用STL中的adjacent_find算法
功能描述:
函数原型:
bool binary_search(iterator beg, iterator end, value);
// 查找指定的元素,查到 返回true 否则false
// 注意: 在无序序列中不可用
// beg 开始迭代器
// end 结束迭代器
// value 查找的元素
示例:
#include <algorithm> #include <vector> void test01() { vector<int>v; for (int i = 0; i < 10; i++) { v.push_back(i); } //二分查找 bool ret = binary_search(v.begin(), v.end(),2); if (ret) { cout << "找到了" << endl; } else { cout << "未找到" << endl; } } int main() { test01(); system("pause"); return 0; }
**总结:**二分查找法查找效率很高,值得注意的是查找的容器中元素必须的有序序列
功能描述:
函数原型:
count(iterator beg, iterator end, value);
// 统计元素出现次数
// beg 开始迭代器
// end 结束迭代器
// value 统计的元素
示例:
#include <algorithm> #include <vector> //内置数据类型 void test01() { vector<int> v; v.push_back(1); v.push_back(2); v.push_back(4); v.push_back(5); v.push_back(3); v.push_back(4); v.push_back(4); int num = count(v.begin(), v.end(), 4); cout << "4的个数为: " << num << endl; } //自定义数据类型 class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; } bool operator==(const Person & p) { if (this->m_Age == p.m_Age) { return true; } else { return false; } } string m_Name; int m_Age; }; void test02() { vector<Person> v; Person p1("刘备", 35); Person p2("关羽", 35); Person p3("张飞", 35); Person p4("赵云", 30); Person p5("曹操", 25); v.push_back(p1); v.push_back(p2); v.push_back(p3); v.push_back(p4); v.push_back(p5); Person p("诸葛亮",35); int num = count(v.begin(), v.end(), p); cout << "num = " << num << endl; } int main() { //test01(); test02(); system("pause"); return 0; }
总结: 统计自定义数据类型时候,需要配合重载 operator==
功能描述:
函数原型:
count_if(iterator beg, iterator end, _Pred);
// 按条件统计元素出现次数
// beg 开始迭代器
// end 结束迭代器
// _Pred 谓词
示例:
#include <algorithm> #include <vector> class Greater4 { public: bool operator()(int val) { return val >= 4; } }; //内置数据类型 void test01() { vector<int> v; v.push_back(1); v.push_back(2); v.push_back(4); v.push_back(5); v.push_back(3); v.push_back(4); v.push_back(4); int num = count_if(v.begin(), v.end(), Greater4()); cout << "大于4的个数为: " << num << endl; } //自定义数据类型 class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; } string m_Name; int m_Age; }; class AgeLess35 { public: bool operator()(const Person &p) { return p.m_Age < 35; } }; void test02() { vector<Person> v; Person p1("刘备", 35); Person p2("关羽", 35); Person p3("张飞", 35); Person p4("赵云", 30); Person p5("曹操", 25); v.push_back(p1); v.push_back(p2); v.push_back(p3); v.push_back(p4); v.push_back(p5); int num = count_if(v.begin(), v.end(), AgeLess35()); cout << "小于35岁的个数:" << num << endl; } int main() { //test01(); test02(); system("pause"); return 0; }
**总结:**按值统计用count,按条件统计用count_if
学习目标:
算法简介:
sort
//对容器内元素进行排序random_shuffle
//洗牌 指定范围内的元素随机调整次序merge
// 容器元素合并,并存储到另一容器中reverse
// 反转指定范围的元素功能描述:
函数原型:
sort(iterator beg, iterator end, _Pred);
// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置
// beg 开始迭代器
// end 结束迭代器
// _Pred 谓词
示例:
#include <algorithm> #include <vector> void myPrint(int val) { cout << val << " "; } void test01() { vector<int> v; v.push_back(10); v.push_back(30); v.push_back(50); v.push_back(20); v.push_back(40); //sort默认从小到大排序 sort(v.begin(), v.end()); for_each(v.begin(), v.end(), myPrint); cout << endl; //从大到小排序 sort(v.begin(), v.end(), greater<int>()); for_each(v.begin(), v.end(), myPrint); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**sort属于开发中最常用的算法之一,需熟练掌握
功能描述:
函数原型:
random_shuffle(iterator beg, iterator end);
// 指定范围内的元素随机调整次序
// beg 开始迭代器
// end 结束迭代器
示例:
#include <algorithm> #include <vector> #include <ctime> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { srand((unsigned int)time(NULL)); vector<int> v; for(int i = 0 ; i < 10;i++) { v.push_back(i); } for_each(v.begin(), v.end(), myPrint()); cout << endl; //打乱顺序 random_shuffle(v.begin(), v.end()); for_each(v.begin(), v.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**random_shuffle洗牌算法比较实用,使用时记得加随机数种子
功能描述:
函数原型:
merge(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);
// 容器元素合并,并存储到另一容器中
// 注意: 两个容器必须是有序的
// beg1 容器1开始迭代器
// end1 容器1结束迭代器
// beg2 容器2开始迭代器
// end2 容器2结束迭代器
// dest 目标容器开始迭代器
示例:
#include <algorithm> #include <vector> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v1; vector<int> v2; for (int i = 0; i < 10 ; i++) { v1.push_back(i); v2.push_back(i + 1); } vector<int> vtarget; //目标容器需要提前开辟空间 vtarget.resize(v1.size() + v2.size()); //合并 需要两个有序序列 merge(v1.begin(), v1.end(), v2.begin(), v2.end(), vtarget.begin()); for_each(vtarget.begin(), vtarget.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**merge合并的两个容器必须的有序序列
功能描述:
函数原型:
reverse(iterator beg, iterator end);
// 反转指定范围的元素
// beg 开始迭代器
// end 结束迭代器
示例:
#include <algorithm> #include <vector> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v; v.push_back(10); v.push_back(30); v.push_back(50); v.push_back(20); v.push_back(40); cout << "反转前: " << endl; for_each(v.begin(), v.end(), myPrint()); cout << endl; cout << "反转后: " << endl; reverse(v.begin(), v.end()); for_each(v.begin(), v.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**reverse反转区间内元素,面试题可能涉及到
学习目标:
算法简介:
copy
// 容器内指定范围的元素拷贝到另一容器中replace
// 将容器内指定范围的旧元素修改为新元素replace_if
// 容器内指定范围满足条件的元素替换为新元素swap
// 互换两个容器的元素功能描述:
函数原型:
copy(iterator beg, iterator end, iterator dest);
// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置
// beg 开始迭代器
// end 结束迭代器
// dest 目标起始迭代器
示例:
#include <algorithm> #include <vector> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v1; for (int i = 0; i < 10; i++) { v1.push_back(i + 1); } vector<int> v2; v2.resize(v1.size()); copy(v1.begin(), v1.end(), v2.begin()); for_each(v2.begin(), v2.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**利用copy算法在拷贝时,目标容器记得提前开辟空间
功能描述:
函数原型:
replace(iterator beg, iterator end, oldvalue, newvalue);
// 将区间内旧元素 替换成 新元素
// beg 开始迭代器
// end 结束迭代器
// oldvalue 旧元素
// newvalue 新元素
示例:
#include <algorithm> #include <vector> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v; v.push_back(20); v.push_back(30); v.push_back(20); v.push_back(40); v.push_back(50); v.push_back(10); v.push_back(20); cout << "替换前:" << endl; for_each(v.begin(), v.end(), myPrint()); cout << endl; //将容器中的20 替换成 2000 cout << "替换后:" << endl; replace(v.begin(), v.end(), 20,2000); for_each(v.begin(), v.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**replace会替换区间内满足条件的元素
功能描述:
函数原型:
replace_if(iterator beg, iterator end, _pred, newvalue);
// 按条件替换元素,满足条件的替换成指定元素
// beg 开始迭代器
// end 结束迭代器
// _pred 谓词
// newvalue 替换的新元素
示例:
#include <algorithm> #include <vector> class myPrint { public: void operator()(int val) { cout << val << " "; } }; class ReplaceGreater30 { public: bool operator()(int val) { return val >= 30; } }; void test01() { vector<int> v; v.push_back(20); v.push_back(30); v.push_back(20); v.push_back(40); v.push_back(50); v.push_back(10); v.push_back(20); cout << "替换前:" << endl; for_each(v.begin(), v.end(), myPrint()); cout << endl; //将容器中大于等于的30 替换成 3000 cout << "替换后:" << endl; replace_if(v.begin(), v.end(), ReplaceGreater30(), 3000); for_each(v.begin(), v.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**replace_if按条件查找,可以利用仿函数灵活筛选满足的条件
功能描述:
函数原型:
swap(container c1, container c2);
// 互换两个容器的元素
// c1容器1
// c2容器2
示例:
#include <algorithm> #include <vector> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v1; vector<int> v2; for (int i = 0; i < 10; i++) { v1.push_back(i); v2.push_back(i+100); } cout << "交换前: " << endl; for_each(v1.begin(), v1.end(), myPrint()); cout << endl; for_each(v2.begin(), v2.end(), myPrint()); cout << endl; cout << "交换后: " << endl; swap(v1, v2); for_each(v1.begin(), v1.end(), myPrint()); cout << endl; for_each(v2.begin(), v2.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**swap交换容器时,注意交换的容器要同种类型
学习目标:
注意:
#include <numeric>
算法简介:
accumulate
// 计算容器元素累计总和
fill
// 向容器中添加元素
功能描述:
函数原型:
accumulate(iterator beg, iterator end, value);
// 计算容器元素累计总和
// beg 开始迭代器
// end 结束迭代器
// value 起始值
示例:
#include <numeric> #include <vector> void test01() { vector<int> v; for (int i = 0; i <= 100; i++) { v.push_back(i); } int total = accumulate(v.begin(), v.end(), 0); cout << "total = " << total << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**accumulate使用时头文件注意是 numeric,这个算法很实用
功能描述:
函数原型:
fill(iterator beg, iterator end, value);
// 向容器中填充元素
// beg 开始迭代器
// end 结束迭代器
// value 填充的值
示例:
#include <numeric> #include <vector> #include <algorithm> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v; v.resize(10); //填充 fill(v.begin(), v.end(), 100); for_each(v.begin(), v.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**利用fill可以将容器区间内元素填充为 指定的值
学习目标:
算法简介:
set_intersection
// 求两个容器的交集
set_union
// 求两个容器的并集
set_difference
// 求两个容器的差集
功能描述:
函数原型:
set_intersection(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);
// 求两个集合的交集
// 注意:两个集合必须是有序序列
// beg1 容器1开始迭代器
// end1 容器1结束迭代器
// beg2 容器2开始迭代器
// end2 容器2结束迭代器
// dest 目标容器开始迭代器
示例:
#include <vector> #include <algorithm> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v1; vector<int> v2; for (int i = 0; i < 10; i++) { v1.push_back(i); v2.push_back(i+5); } vector<int> vTarget; //取两个里面较小的值给目标容器开辟空间 vTarget.resize(min(v1.size(), v2.size())); //返回目标容器的最后一个元素的迭代器地址 vector<int>::iterator itEnd = set_intersection(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin()); for_each(vTarget.begin(), itEnd, myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
set_union(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);
// 求两个集合的并集
// 注意:两个集合必须是有序序列
// beg1 容器1开始迭代器
// end1 容器1结束迭代器
// beg2 容器2开始迭代器
// end2 容器2结束迭代器
// dest 目标容器开始迭代器
示例:
#include <vector> #include <algorithm> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v1; vector<int> v2; for (int i = 0; i < 10; i++) { v1.push_back(i); v2.push_back(i+5); } vector<int> vTarget; //取两个容器的和给目标容器开辟空间 vTarget.resize(v1.size() + v2.size()); //返回目标容器的最后一个元素的迭代器地址 vector<int>::iterator itEnd = set_union(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin()); for_each(vTarget.begin(), itEnd, myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
set_difference(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);
// 求两个集合的差集
// 注意:两个集合必须是有序序列
// beg1 容器1开始迭代器
// end1 容器1结束迭代器
// beg2 容器2开始迭代器
// end2 容器2结束迭代器
// dest 目标容器开始迭代器
示例:
#include <vector> #include <algorithm> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v1; vector<int> v2; for (int i = 0; i < 10; i++) { v1.push_back(i); v2.push_back(i+5); } vector<int> vTarget; //取两个里面较大的值给目标容器开辟空间 vTarget.resize( max(v1.size() , v2.size())); //返回目标容器的最后一个元素的迭代器地址 cout << "v1与v2的差集为: " << endl; vector<int>::iterator itEnd = set_difference(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin()); for_each(vTarget.begin(), itEnd, myPrint()); cout << endl; cout << "v2与v1的差集为: " << endl; itEnd = set_difference(v2.begin(), v2.end(), v1.begin(), v1.end(), vTarget.begin()); for_each(vTarget.begin(), itEnd, myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
总结:
求差集的两个集合必须的有序序列
目标容器开辟空间需要从两个容器取较大值
id test01()
{
vector v1;
for (int i = 0; i < 10; i++) {
v1.push_back(i + 1);
}
vector v2;
v2.resize(v1.size());
copy(v1.begin(), v1.end(), v2.begin());
for_each(v2.begin(), v2.end(), myPrint());
cout << endl;
}
int main() {
test01(); system("pause"); return 0;
}
**总结:**利用copy算法在拷贝时,目标容器记得提前开辟空间 #### 5.4.2 replace **功能描述:** * 将容器内指定范围的旧元素修改为新元素 **函数原型:** - `replace(iterator beg, iterator end, oldvalue, newvalue); ` // 将区间内旧元素 替换成 新元素 // beg 开始迭代器 // end 结束迭代器 // oldvalue 旧元素 // newvalue 新元素 **示例:** ```c++ #include <algorithm> #include <vector> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v; v.push_back(20); v.push_back(30); v.push_back(20); v.push_back(40); v.push_back(50); v.push_back(10); v.push_back(20); cout << "替换前:" << endl; for_each(v.begin(), v.end(), myPrint()); cout << endl; //将容器中的20 替换成 2000 cout << "替换后:" << endl; replace(v.begin(), v.end(), 20,2000); for_each(v.begin(), v.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**replace会替换区间内满足条件的元素
功能描述:
函数原型:
replace_if(iterator beg, iterator end, _pred, newvalue);
// 按条件替换元素,满足条件的替换成指定元素
// beg 开始迭代器
// end 结束迭代器
// _pred 谓词
// newvalue 替换的新元素
示例:
#include <algorithm> #include <vector> class myPrint { public: void operator()(int val) { cout << val << " "; } }; class ReplaceGreater30 { public: bool operator()(int val) { return val >= 30; } }; void test01() { vector<int> v; v.push_back(20); v.push_back(30); v.push_back(20); v.push_back(40); v.push_back(50); v.push_back(10); v.push_back(20); cout << "替换前:" << endl; for_each(v.begin(), v.end(), myPrint()); cout << endl; //将容器中大于等于的30 替换成 3000 cout << "替换后:" << endl; replace_if(v.begin(), v.end(), ReplaceGreater30(), 3000); for_each(v.begin(), v.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**replace_if按条件查找,可以利用仿函数灵活筛选满足的条件
功能描述:
函数原型:
swap(container c1, container c2);
// 互换两个容器的元素
// c1容器1
// c2容器2
示例:
#include <algorithm> #include <vector> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v1; vector<int> v2; for (int i = 0; i < 10; i++) { v1.push_back(i); v2.push_back(i+100); } cout << "交换前: " << endl; for_each(v1.begin(), v1.end(), myPrint()); cout << endl; for_each(v2.begin(), v2.end(), myPrint()); cout << endl; cout << "交换后: " << endl; swap(v1, v2); for_each(v1.begin(), v1.end(), myPrint()); cout << endl; for_each(v2.begin(), v2.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**swap交换容器时,注意交换的容器要同种类型
学习目标:
注意:
#include <numeric>
算法简介:
accumulate
// 计算容器元素累计总和
fill
// 向容器中添加元素
功能描述:
函数原型:
accumulate(iterator beg, iterator end, value);
// 计算容器元素累计总和
// beg 开始迭代器
// end 结束迭代器
// value 起始值
示例:
#include <numeric> #include <vector> void test01() { vector<int> v; for (int i = 0; i <= 100; i++) { v.push_back(i); } int total = accumulate(v.begin(), v.end(), 0); cout << "total = " << total << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**accumulate使用时头文件注意是 numeric,这个算法很实用
功能描述:
函数原型:
fill(iterator beg, iterator end, value);
// 向容器中填充元素
// beg 开始迭代器
// end 结束迭代器
// value 填充的值
示例:
#include <numeric> #include <vector> #include <algorithm> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v; v.resize(10); //填充 fill(v.begin(), v.end(), 100); for_each(v.begin(), v.end(), myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
**总结:**利用fill可以将容器区间内元素填充为 指定的值
学习目标:
算法简介:
set_intersection
// 求两个容器的交集
set_union
// 求两个容器的并集
set_difference
// 求两个容器的差集
功能描述:
函数原型:
set_intersection(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);
// 求两个集合的交集
// 注意:两个集合必须是有序序列
// beg1 容器1开始迭代器
// end1 容器1结束迭代器
// beg2 容器2开始迭代器
// end2 容器2结束迭代器
// dest 目标容器开始迭代器
示例:
#include <vector> #include <algorithm> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v1; vector<int> v2; for (int i = 0; i < 10; i++) { v1.push_back(i); v2.push_back(i+5); } vector<int> vTarget; //取两个里面较小的值给目标容器开辟空间 vTarget.resize(min(v1.size(), v2.size())); //返回目标容器的最后一个元素的迭代器地址 vector<int>::iterator itEnd = set_intersection(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin()); for_each(vTarget.begin(), itEnd, myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
set_union(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);
// 求两个集合的并集
// 注意:两个集合必须是有序序列
// beg1 容器1开始迭代器
// end1 容器1结束迭代器
// beg2 容器2开始迭代器
// end2 容器2结束迭代器
// dest 目标容器开始迭代器
示例:
#include <vector> #include <algorithm> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v1; vector<int> v2; for (int i = 0; i < 10; i++) { v1.push_back(i); v2.push_back(i+5); } vector<int> vTarget; //取两个容器的和给目标容器开辟空间 vTarget.resize(v1.size() + v2.size()); //返回目标容器的最后一个元素的迭代器地址 vector<int>::iterator itEnd = set_union(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin()); for_each(vTarget.begin(), itEnd, myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
总结:
功能描述:
函数原型:
set_difference(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);
// 求两个集合的差集
// 注意:两个集合必须是有序序列
// beg1 容器1开始迭代器
// end1 容器1结束迭代器
// beg2 容器2开始迭代器
// end2 容器2结束迭代器
// dest 目标容器开始迭代器
示例:
#include <vector> #include <algorithm> class myPrint { public: void operator()(int val) { cout << val << " "; } }; void test01() { vector<int> v1; vector<int> v2; for (int i = 0; i < 10; i++) { v1.push_back(i); v2.push_back(i+5); } vector<int> vTarget; //取两个里面较大的值给目标容器开辟空间 vTarget.resize( max(v1.size() , v2.size())); //返回目标容器的最后一个元素的迭代器地址 cout << "v1与v2的差集为: " << endl; vector<int>::iterator itEnd = set_difference(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin()); for_each(vTarget.begin(), itEnd, myPrint()); cout << endl; cout << "v2与v1的差集为: " << endl; itEnd = set_difference(v2.begin(), v2.end(), v1.begin(), v1.end(), vTarget.begin()); for_each(vTarget.begin(), itEnd, myPrint()); cout << endl; } int main() { test01(); system("pause"); return 0; }
总结: