产生的随机数是
0 - 1 之间的一个 double
,即 0 <= random <= 1
。
使用:
for (int i = 0; i < 10; i++) { System.out.println(Math.random()); }
结果:
0.3598613895606426
0.2666778145365811
0.25090731064243355
0.011064998061666276
0.600686228175639
0.9084006027629496
0.12700524654847833
0.6084605849069343
0.7290804782514261
0.9923831908303121
实现原理:
When this method is first called, it creates a single new pseudorandom-number generator, exactly as if by the expression new java.util.Random()
This new pseudorandom-number generator is used thereafter for all calls to this method and is used nowhere else.
当第一次调用 Math.random()
方法时,自动创建了一个伪随机数生成器,实际上用的是 new java.util.Random()
。
当接下来继续调用 Math.random()
方法时,就会使用这个新的伪随机数生成器。
源码如下:
public static double random() { Random rnd = randomNumberGenerator; if (rnd == null) rnd = initRNG(); // 第一次调用,创建一个伪随机数生成器 return rnd.nextDouble(); } private static synchronized Random initRNG() { Random rnd = randomNumberGenerator; return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd; // 实际上用的是new java.util.Random() }
This method is properly synchronized to allow correct use by more than one thread. However, if many threads need to generate pseudorandom numbers at a great rate, it may reduce contention for each thread to have its own pseudorandom-number generator.
initRNG()
方法是 synchronized
的,因此在多线程情况下,只有一个线程会负责创建伪随机数生成器(使用当前时间作为种子),其他线程则利用该伪随机数生成器产生随机数。
因此 Math.random()
方法是线程安全的。
什么情况下随机数的生成线程不安全:
random()
时产生一个生成器 generator1
,使用当前时间作为种子。random()
时产生一个生成器 generator2
,使用当前时间作为种子。generator1
和 generator2
使用相同的种子,导致 generator1
以后产生的随机数每次都和 generator2
以后产生的随机数相同。什么情况下随机数的生成线程安全: Math.random()
静态方法使用
random()
时产生一个生成器 generator1
,使用当前时间作为种子。random()
时发现已经有一个生成器 generator1
,则直接使用生成器 generator1
。public class JavaRandom { public static void main(String args[]) { new MyThread().start(); new MyThread().start(); } } class MyThread extends Thread { public void run() { for (int i = 0; i < 2; i++) { System.out.println(Thread.currentThread().getName() + ": " + Math.random()); } } }
结果:
Thread-1: 0.8043581595645333
Thread-0: 0.9338269554390357
Thread-1: 0.5571569413128877
Thread-0: 0.37484586843392464
基本算法:linear congruential pseudorandom number generator
(LGC) 线性同余法伪随机数生成器
缺点:可预测
An attacker will simply compute the seed from the output values observed. This takes significantly less time than 2^48 in the case of java.util.Random.
从输出中可以很容易计算出种子值。
It is shown that you can predict future Random outputs observing only two(!) output values in time roughly 2^16.
因此可以预测出下一个输出的随机数。
You should never use an LCG for security-critical purposes.
在注重信息安全的应用中,不要使用 LCG 算法生成随机数,请使用 SecureRandom。
使用:
Random random = new Random(); for (int i = 0; i < 5; i++) { System.out.println(random.nextInt()); }
结果:
-24520987
-96094681
-952622427
300260419
1489256498
Random类默认使用当前系统时钟作为种子:
public Random() { this(seedUniquifier() ^ System.nanoTime()); } public Random(long seed) { if (getClass() == Random.class) this.seed = new AtomicLong(initialScramble(seed)); else { // subclass might have overriden setSeed this.seed = new AtomicLong(); setSeed(seed); } }
Random类提供的方法:API
nextBoolean()
-
返回均匀分布的 true
或者 false
nextBytes(byte[] bytes)
nextDouble()
-
返回 0.0 到 1.0 之间的均匀分布的 double
nextFloat()
- 返回 0.0 到 1.0
之间的均匀分布的 float
nextGaussian()
-
返回 0.0 到 1.0 之间的高斯分布(即正态分布)的 double
nextInt()
-
返回均匀分布的 int
nextInt(int
n)
- 返回 0 到 n
之间的均匀分布的 int
(包括 0,不包括
n)nextLong()
-
返回均匀分布的 long
setSeed(long
seed)
-
设置种子只要种子一样,产生的随机数也一样: 因为种子确定,随机数算法也确定,因此输出是确定的!
Random random1 = new Random(10000); Random random2 = new Random(10000); for (int i = 0; i < 5; i++) { System.out.println(random1.nextInt() + " = " + random2.nextInt()); }
结果:
-498702880 = -498702880
-858606152 = -858606152
1942818232 = 1942818232
-1044940345 = -1044940345
1588429001 = 1588429001
ThreadLocalRandom
是
JDK 7 之后提供,也是继承至
java.util.Random。
private static final ThreadLocal<ThreadLocalRandom> localRandom = new ThreadLocal<ThreadLocalRandom>() { protected ThreadLocalRandom initialValue() { return new ThreadLocalRandom(); } };
每一个线程有一个独立的随机数生成器,用于并发产生随机数,能够解决多个线程发生的竞争争夺。效率更高!ThreadLocalRandom
不是直接用 new
实例化,而是第一次使用其静态方法 current()
得到 ThreadLocal<ThreadLocalRandom>
实例,然后调用 java.util.Random
类提供的方法获得各种随机数。
使用:
public class JavaRandom { public static void main(String args[]) { new MyThread().start(); new MyThread().start(); } } class MyThread extends Thread { public void run() { for (int i = 0; i < 2; i++) { System.out.println(Thread.currentThread().getName() + ": " + ThreadLocalRandom.current().nextDouble()); } } }
结果:
Thread-0: 0.13267085355389086
Thread-1: 0.1138484950410098
Thread-0: 0.17187774671469858
Thread-1: 0.9305225910262372
也是继承至 java.util.Random。
Instances of java.util.Random are not cryptographically secure. Consider instead using SecureRandom to get a cryptographically secure pseudo-random number generator for use by security-sensitive applications.
SecureRandom takes Random Data from your os (they can be interval between keystrokes etc - most os collect these data store them in files - /dev/random and /dev/urandom in case of linux/solaris) and uses that as the seed.
操作系统收集了一些随机事件,比如鼠标点击,键盘点击等等,SecureRandom 使用这些随机事件作为种子。
SecureRandom
提供加密的强随机数生成器
(RNG),要求种子必须是不可预知的,产生非确定性输出。SecureRandom
也提供了与实现无关的算法,因此,调用方(应用程序代码)会请求特定的
RNG 算法并将它传回到该算法的 SecureRandom
对象中。
如果仅指定算法名称,如下所示:SecureRandom random =
SecureRandom.getInstance("SHA1PRNG");
如果既指定了算法名称又指定了包提供程序,如下所示:SecureRandom random =
SecureRandom.getInstance("SHA1PRNG", "SUN");
使用:
SecureRandom random1 = SecureRandom.getInstance("SHA1PRNG"); SecureRandom random2 = SecureRandom.getInstance("SHA1PRNG"); for (int i = 0; i < 5; i++) { System.out.println(random1.nextInt() + " != " + random2.nextInt()); }
结果:
704046703 != 2117229935
60819811 != 107252259
425075610 != -295395347
682299589 != -1637998900
-1147654329 != 1418666937
可以使用
Apache Commons-Lang 包中的 RandomStringUtils
类。
Maven 依赖如下:
<dependency> <groupId>commons-lang</groupId> <artifactId>commons-lang</artifactId> <version>2.6</version> </dependency>
API 参考:https://commons.apache.org/proper/commons-lang/javadocs/api-2.6/org/apache/commons/lang/RandomStringUtils.html
示例:
public class RandomStringDemo { public static void main(String[] args) { // Creates a 64 chars length random string of number. String result = RandomStringUtils.random(64, false, true); System.out.println("random = " + result); // Creates a 64 chars length of random alphabetic string. result = RandomStringUtils.randomAlphabetic(64); System.out.println("random = " + result); // Creates a 32 chars length of random ascii string. result = RandomStringUtils.randomAscii(32); System.out.println("random = " + result); // Creates a 32 chars length of string from the defined array of // characters including numeric and alphabetic characters. result = RandomStringUtils.random(32, 0, 20, true, true, "qw32rfHIJk9iQ8Ud7h0X".toCharArray()); System.out.println("random = " + result); } }
RandomStringUtils
类的实现上也是依赖了 java.util.Random
工具类:
引用:
http://yangzb.iteye.com/blog/325264
Difference
between java.util.Random and java.security.SecureRandom