https://github.com/zq2599/blog_demos
内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;
本文是《Spring Cloud Gateway实战》系列的第八篇,经过前面的学习,咱们对过滤器已了解得差不多,今天来补全过滤器的最后一个版块:限流(RequestRateLimiter )
默认的限流器是基于redis实现的,限流算法是大家熟悉的令牌桶(Token Bucket Algorithm),关于令牌捅的原理就不在此展开了,聪明的您看一眼下图应该就懂了:装令牌的桶容量有限,例如最多20个,令牌进入桶的速度恒定(注意,这里是和漏桶算法的区别),例如每秒10个,底部每个请求能拿到令牌才会被处理:
名称 | 链接 | 备注 |
---|---|---|
项目主页 | https://github.com/zq2599/blog_demos | 该项目在GitHub上的主页 |
git仓库地址(https) | https://github.com/zq2599/blog_demos.git | 该项目源码的仓库地址,https协议 |
git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该项目源码的仓库地址,ssh协议 |
@GetMapping("/userinfo") public String userInfo(@RequestParam("username") String username) { return Constants.HELLO_PREFIX + " " + username + ", " + dateStr(); }
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <parent> <artifactId>spring-cloud-tutorials</artifactId> <groupId>com.bolingcavalry</groupId> <version>1.0-SNAPSHOT</version> </parent> <modelVersion>4.0.0</modelVersion> <artifactId>gateway-requestratelimiter</artifactId> <dependencies> <dependency> <groupId>com.bolingcavalry</groupId> <artifactId>common</artifactId> <version>${project.version}</version> </dependency> <dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-gateway</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis-reactive</artifactId> </dependency> </dependencies> </project>
server: #服务端口 port: 8081 spring: application: name: circuitbreaker-gateway # redis配置 redis: host: 192.168.50.43 port: 6379 cloud: gateway: routes: - id: path_route uri: http://127.0.0.1:8082 predicates: - Path=/hello/** filters: - name: RequestRateLimiter args: # 令牌入桶的速度为每秒100个,相当于QPS redis-rate-limiter.replenishRate: 100 # 桶内能装200个令牌,相当于峰值,要注意的是:第一秒从桶内能去200个,但是第二秒只能取到100个了,因为入桶速度是每秒100个 redis-rate-limiter.burstCapacity: 200 # 每个请求需要的令牌数 redis-rate-limiter.requestedTokens: 1
package com.bolingcavalry.gateway.config; import org.springframework.cloud.gateway.filter.ratelimit.KeyResolver; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import reactor.core.publisher.Mono; import java.util.Objects; @Configuration public class CustomizeConfig { @Bean KeyResolver userKeyResolver() { return exchange -> Mono.just(exchange.getRequest().getQueryParams().getFirst("username")); } }
package com.bolingcavalry.gateway; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; @SpringBootApplication public class RequestRateLimiterApplication { public static void main(String[] args) { SpringApplication.run(RequestRateLimiterApplication.class,args); } }
首先验证的是桶容量等于入桶速度时的效果,请修改gateway-requestratelimiter应用的application.yml中文件,使得redis-rate-limiter.replenishRate和redis-rate-limiter.burstCapacity的值都等于100,也就是说桶的大小等于100,每秒放入的令牌数也是100
确保redis已经启动,并且与application.yml中的配置保持一直
启动nacos(provider-hello依赖)
启动服务提供者provider-hello
启动gateway-requestratelimiter
为了模拟web请求,我这里使用了Apache Benchmark,windows版本的下载地址:
https://www.apachelounge.com/download/VS16/binaries/httpd-2.4.48-win64-VS16.zip
上述文件下载解压后即可使用,在控制台进入Apache24\bin后执行以下命令,意思是向指定地址发送10000个请求,并发数为2:
ab -n 10000 -c 2 http://localhost:8081/hello/userinfo?username=Tom
接下来试试桶容量大于入桶速度时的限流效果,这对于我们控制峰值响应有很重要的参考价值
请修改gateway-requestratelimiter应用的application.yml中文件,redis-rate-limiter.replenishRate维持100不变,但是redis-rate-limiter.burstCapacity改成200,也就是说每秒放入的令牌数还是100,但桶的容量翻倍了
重启应用gateway-requestratelimiter
再次执行以下命令,意思是向指定地址发送10000个请求,并发数为2:
ab -n 10000 -c 2 http://localhost:8081/hello/userinfo?username=Tom
接下来验证限流的维度,究竟是不是按照请求参数username的值来限流的
咱们打开两个命令行,同时发送请求(动作要快),第一个的username等于Tom,第二个等于Jerry,理论上推测,如果都是8秒内完成,那么每个命令都有900个请求能成功
测试结果如下图,可见符合预期,每个username用的是自己的令牌:
我是欣宸,期待与您一同畅游Java世界…
https://github.com/zq2599/blog_demos