接下来看看CheckGCForNative
函数内部的逻辑。
首先计算当前native内存的总大小,然后计算当前内存大小和阈值之间的比值,如果比值≥1,则请求一次新的GC。
art/runtime/gc/heap.cc
inline void Heap::CheckGCForNative(Thread* self) {
bool is_gc_concurrent = IsGcConcurrent();
size_t current_native_bytes = GetNativeBytes(); <================获取native内存的总大小
float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent); <============计算当前内存大小和阈值之间的比值,大于等于1则表明需要一次新的GC
if (UNLIKELY(gc_urgency >= 1.0)) {
if (is_gc_concurrent) {
RequestConcurrentGC(self, kGcCauseForNativeAlloc, /force_full=/true); <=================请求一次新的GC
if (gc_urgency > kStopForNativeFactor
&& current_native_bytes > stop_for_native_allocs_) {
// We’re in danger of running out of memory due to rampant native allocation.
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency;
}
WaitForGcToComplete(kGcCauseForNativeAlloc, self);
}
} else {
CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false);
}
}
}
获取当前native内存的总大小需要调用GetNativeBytes
函数。其内部统计也分为两部分,一部分是通过mallinfo
获取的当前malloc的总大小。由于系统有专门的API获取这个信息,所以在NativeAllocationRegistry.registerNativeAllocation
的时候不需要专门去存储单次malloc的大小。另一部分是native_bytes_registered_字段记录的所有注册过的mmap大小。二者相加,基本上反映了当前进程native内存的整体消耗。
art/runtime/gc/heap.cc
size_t Heap::GetNativeBytes() {
size_t malloc_bytes;
#if defined(BIONIC) || defined(GLIBC)
IF_GLIBC(size_t mmapped_bytes;)
struct mallinfo mi = mallinfo();
// In spite of the documentation, the jemalloc version of this call seems to do what we want,
// and it is thread-safe.
if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) {
// Shouldn’t happen, but glibc declares uordblks as int.
// Avoiding sign extension gets us correct behavior for another 2 GB.
malloc_bytes = (unsigned int)mi.uordblks;
IF_GLIBC(mmapped_bytes = (unsigned int)mi.hblkhd;)
} else {
malloc_bytes = mi.uordblks;
IF_GLIBC(mmapped_bytes = mi.hblkhd;)
}
// From the spec, it appeared mmapped_bytes <= malloc_bytes. Reality was sometimes
// dramatically different. (b/119580449 was an early bug.) If so, we try to fudge it.
// However, malloc implementations seem to interpret hblkhd differently, namely as
// mapped blocks backing the entire heap (e.g. jemalloc) vs. large objects directly
// allocated via mmap (e.g. glibc). Thus we now only do this for glibc, where it
// previously helped, and which appears to use a reading of the spec compatible
// with our adjustment.
#if defined(GLIBC)
if (mmapped_bytes > malloc_bytes) {
malloc_bytes = mmapped_bytes;
}
#endif // GLIBC
#else // Neither Bionic nor Glibc
// We should hit this case only in contexts in which GC triggering is not critical. Effectively
// disable GC triggering based on malloc().
malloc_bytes = 1000;
#endif
return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed);
// An alternative would be to get RSS from /proc/self/statm. Empirically, that’s no
// more expensive, and it would allow us to count memory allocated by means other than malloc.
// However it would change as pages are unmapped and remapped due to memory pressure, among
// other things. It seems risky to trigger GCs as a result of such changes.
}
得到当前进程native内存的总大小之后,便需要抉择是否需要一次新的GC。
决策的过程如下,源码下面是详细解释。
art/runtime/gc/heap.cc
// Return the ratio of the weighted native + java allocated bytes to its target value.
// A return value > 1.0 means we should collect. Significantly larger values mean we’re falling
// behind.
inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) {
// Collection check for native allocation. Does not enforce Java heap bounds.
// With adj_start_bytes defined below, effectively checks
// + c1* + c2*<new native allocd) >= adj_start_bytes,
// where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above.
size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed);
if (old_native_bytes > current_native_bytes) {
// Net decrease; skip the check, but update old value.
// It’s OK to lose an update if two stores race.
old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed);
return 0.0;
} else {
size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes); <=(1)
size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor <=(2)
首先将本次native内存总大小和上一次GC完成后的native内存总大小进行比较。如果小于上次的总大小,则表明native内存的使用水平降低了,因此完全没有必要进行一次新的GC。
但如果这次native内存使用增长的话,则需要进一步计算当前值和阈值之间的比例关系,大于等于1的话就需要进行GC。下面详细介绍源码中的(1)~(6)。
(1)计算本次native内存和上次之间的差值,这个差值反映了native内存中新增长部分的大小。
(2)给不同部分的native内存以不同的权重,新增长部分除以2,旧的部分除以65536。之所以给旧的部分权重如此之低,是因为native堆本身是没有上限的。这套机制的初衷并不是限制native堆的大小,而只是防止两次GC间native内存垃圾积累过多。
(3)所谓的阈值并不是为native内存单独设立的,而是为(Java堆大小+native内存大小)整体设立的。add_bytes_allowed表示在原有Java堆阈值的基础上,还可以允许的native内存大小。NativeAllocationGcWatermark
根据Java堆阈值计算出允许的native内存大小,Java堆阈值越大,允许的值也越大。HeapGrowthMultipiler
对于前台应用是2,表明前台应用的内存管控更松,GC触发频率更低。
(4)同等条件下,同步GC的触发水位要低于非同步GC,原因是同步GC在垃圾回收时也会有新的对象分配,因此加上这些新分配的对象最好也不要超过阈值。
(5)将Java堆阈值和允许的native内存相加,作为新的阈值。
(6)将Java堆已分配的大小和调整权重后的native内存大小相加,并将相加后的结果除以阈值,得到一个比值来判定是否需要GC。
通过如下代码可知,当比值≥1时,将请求一次新的GC。
art/runtime/gc/heap.cc
if (UNLIKELY(gc_urgency >= 1.0)) {
if (is_gc_concurrent) {
RequestConcurrentGC(self, kGcCauseForNativeAlloc, /force_full=/true); <=================请求一次新的GC
mmap的处理方式和malloc基本相当,大于300,000 bytes或mmap三百次都执行CheckGCForNative
。唯一的区别在于mmap需要将每一次的大小都计入native_bytes_registered中,因为mallinfo中并不会记录这个信息(针对bionic库而言)。
art/runtime/gc/heap.cc
void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
// Cautiously check for a wrapped negative bytes argument.
DCHECK(sizeof(size_t) < 8 || bytes < (std::numeric_limits<size_t>::max() / 2));
native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed);
uint32_t objects_notified =
native_objects_notified_.fetch_add(1, std::memory_order_relaxed);
if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1
|| bytes > kCheckImmediatelyThreshold) {
CheckGCForNative(ThreadForEnv(env));
}
}
NativeAllocationRegistry中主要依靠Cleaner机制完成了这个过程。关于Cleaner的细节,可以参考我的上篇博客。
Bitmap类就是通过NativeAllocationRegistry来实现native资源自动释放的。以下是Bitmap构造方法的一部分。
frameworks/base/graphics/java/android/graphics/Bitmap.java
mNativePtr = nativeBitmap; <=========================== 通过指针值间接持有native资源
final int allocationByteCount = getAllocationByteCount(); <==== 获取native资源的大小,如果是mmap方式,这个大小最终会计入native_bytes_registered中
NativeAllocationRegistry registry;
if (fromMalloc) {
registry = NativeAllocationRegistry.createMalloced( <==== 根据native资源分配方式的不同,构造不同的NativeAllocationRegistry对象,nativeGetNativeFinalizer()返回的是native资源释放函数的函数指针
Bitmap.class.getClassLoader(), nativeGetNativeFinalizer(), allocationByteCount);
} else {
registry = NativeAllocationRegistry.createNonmalloced(
Bitmap.class.getClassLoader(), nativeGetNativeFinalizer(), allocationByteCount);
}