A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.void insert(String word)
Inserts the string word
into the trie.boolean search(String word)
Returns true
if the string word
is in the trie (i.e., was inserted before), and false
otherwise.boolean startsWith(String prefix)
Returns true
if there is a previously inserted string word
that has the prefix prefix
, and false
otherwise.Example 1:
Input ["Trie", "insert", "search", "search", "startsWith", "insert", "search"] [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]] Output [null, null, true, false, true, null, true] Explanation Trie trie = new Trie(); trie.insert("apple"); trie.search("apple"); // return True trie.search("app"); // return False trie.startsWith("app"); // return True trie.insert("app"); trie.search("app"); // return True
Constraints:
1 <= word.length, prefix.length <= 2000
word
and prefix
consist only of lowercase English letters.3 * 104
calls in total will be made to insert
, search
, and startsWith
.class Trie { class TrieNode{ TrieNode[] children = new TrieNode[26]; boolean isWord; } private TrieNode root=null; public Trie() { root = new TrieNode(); } public void insert(String word) { TrieNode curr = root; for(char c:word.toCharArray()){ if(curr.children[c-'a']==null) curr.children[c-'a']=new TrieNode(); curr = curr.children[c-'a']; } curr.isWord=true; } public boolean search(String word) { TrieNode curr = root; for(char c:word.toCharArray()){ if(curr.children[c-'a']==null) return false;; curr = curr.children[c-'a']; } return curr.isWord; } public boolean startsWith(String prefix) { TrieNode curr = root; for(char c:prefix.toCharArray()){ if(curr.children[c-'a']==null) return false;; curr = curr.children[c-'a']; } return true; } }
时间复杂度:O(Len)
Design a data structure that supports adding new words and finding if a string matches any previously added string.
Implement the WordDictionary
class:
WordDictionary()
Initializes the object.void addWord(word)
Adds word
to the data structure, it can be matched later.bool search(word)
Returns true
if there is any string in the data structure that matches word
or false
otherwise. word
may contain dots '.'
where dots can be matched with any letter.Example:
Input ["WordDictionary","addWord","addWord","addWord","search","search","search","search"] [[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]] Output [null,null,null,null,false,true,true,true] Explanation WordDictionary wordDictionary = new WordDictionary(); wordDictionary.addWord("bad"); wordDictionary.addWord("dad"); wordDictionary.addWord("mad"); wordDictionary.search("pad"); // return False wordDictionary.search("bad"); // return True wordDictionary.search(".ad"); // return True wordDictionary.search("b.."); // return True
Constraints:
1 <= word.length <= 500
word
in addWord
consists lower-case English letters.word
in search
consist of '.'
or lower-case English letters.50000
calls will be made to addWord
and search
.class WordDictionary { TrieNode root; class TrieNode{ TrieNode[] children = new TrieNode[26]; boolean isWord; } public WordDictionary() { root = new TrieNode(); } public void addWord(String word) { TrieNode curr = root; for(char c:word.toCharArray()){ if(curr.children[c-'a']==null) curr.children[c-'a'] = new TrieNode(); curr = curr.children[c-'a']; } curr.isWord=true; } public boolean search(String word){ return search(word,root); } private boolean search(String word,TrieNode start) { if(word.length()==0) return start.isWord; TrieNode curr = start; for(int i=0;i<word.length();i++){ char c = word.charAt(i); if(c=='.'){ for(int j=0;j<26;j++){ if(curr.children[j]!=null && search(word.substring(i+1),curr.children[j])) return true; } return false; } if(curr.children[c-'a']==null) return false; curr = curr.children[c-'a']; } return curr.isWord; } }
时间复杂度:所有字符串长度和为totalLen, 时间复杂度O(totalLen) , 查找单个len长度的字符串时间复杂度 O(len)
Given an m x n
board
of characters and a list of strings words
, return all words on the board.
Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.
Example 1:
Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"] Output: ["eat","oath"]
Example 2:
Input: board = [["a","b"],["c","d"]], words = ["abcb"] Output: []
Constraints:
m == board.length
n == board[i].length
1 <= m, n <= 12
board[i][j]
is a lowercase English letter.1 <= words.length <= 3 * 104
1 <= words[i].length <= 10
words[i]
consists of lowercase English letters.words
are unique.class Solution { private TrieNode root=null; public List<String> findWords(char[][] board, String[] words) { //trie build root = new TrieNode(); for(String str:words) insert(str); int m = board.length,n=board[0].length; //set 为了去重 Set<String> result = new HashSet(); boolean[][] visited = new boolean[m][n]; //循环遍历每个元素,dfs进行trie搜索 for(int i=0;i<m;i++){ for(int j=0;j<n;j++){ helper(visited,result,i,j,root,"",board); } } return new ArrayList(result); } private void helper(boolean[][] visited,Set<String> result,int i,int j,TrieNode root,String curr,char[][] board){ if(i<0||j<0||i>=visited.length||j>=visited[0].length) return; if(visited[i][j]) return; visited[i][j]=true; char c = board[i][j]; if(root.children[c-'a']!=null){ if(root.children[c-'a'].isWord) result.add(curr+c); helper(visited,result,i-1,j,root.children[c-'a'],curr+c,board); helper(visited,result,i+1,j,root.children[c-'a'],curr+c,board); helper(visited,result,i,j-1,root.children[c-'a'],curr+c,board); helper(visited,result,i,j+1,root.children[c-'a'],curr+c,board); } visited[i][j]=false;//记得这是一个backtracking的过程,访问结束还原变量,这个是坑点 } //Trie数据结构 class TrieNode{ TrieNode[] children = new TrieNode[26]; boolean isWord; } private void insert(String word) { TrieNode curr = root; for(char c:word.toCharArray()){ if(curr.children[c-'a']==null) curr.children[c-'a']=new TrieNode(); curr = curr.children[c-'a']; } curr.isWord=true; } }
时间复杂度:构建trie时间复杂度 O(sum(len)) ,len 是每个word的长度。遍历所有元素匹配过程:O(M*N*len)??
Given an integer array nums
, return the maximum result of nums[i] XOR nums[j]
, where 0 <= i <= j < n
.
Example 1:
Input: nums = [3,10,5,25,2,8] Output: 28 Explanation: The maximum result is 5 XOR 25 = 28.
Example 2:
Input: nums = [0] Output: 0
Example 3:
Input: nums = [2,4] Output: 6
Example 4:
Input: nums = [8,10,2] Output: 10
Example 5:
Input: nums = [14,70,53,83,49,91,36,80,92,51,66,70] Output: 127
Constraints:
1 <= nums.length <= 2 * 105
0 <= nums[i] <= 231 - 1
class Solution { public int findMaximumXOR(int[] nums) { //建立Trie Trie root = new Trie(); for( int num:nums ) build(num,root); int max = 0; //循环遍历所有元素,求出最优解 for(int num:nums){ max = Math.max(max,xor(num,root)); } return max; } //Trie 数据结构 class Trie{ Trie[] children = new Trie[2]; } //建立 Trie private void build(int num,Trie root){ for(int i=31;i>=0;i--){ int res = (num>>i)&1; if(root.children[res]==null) root.children[res]=new Trie(); root = root.children[res]; } } //从trie中取出当前num xor的最优解 private int xor(int num,Trie root){ int sum = 0; for(int i=31;i>=0;i--){ int res = (num>>i)&1; int resMax = res==1 ? 0 : 1; if(root.children[resMax]!=null){ sum+=1<<i; root = root.children[resMax]; } else root = root.children[res]; } return sum; } }
Given an integer n
, return all the numbers in the range [1, n]
sorted in lexicographical order.
You must write an algorithm that runs in O(n)
time and uses O(1)
extra space.
Example 1:
Input: n = 13 Output: [1,10,11,12,13,2,3,4,5,6,7,8,9]
Example 2:
Input: n = 2 Output: [1,2]
Constraints:
1 <= n <= 5 * 104
class Solution { public List<Integer> lexicalOrder(int n) { Trie root = new Trie(); for(int i=1;i<=n;i++) buildTrie(i,root); List<Integer> result = new ArrayList(); traversalTrie(root,result,0); return result; } private void traversalTrie(Trie trie,List<Integer> list,int sum){ if(trie.isNumber) list.add(sum); for(int i=0;i<10;i++){ Trie child= trie.children[i]; if(child==null) continue; traversalTrie(child,list,sum*10+i); } } class Trie{ Trie[] children= new Trie[10]; boolean isNumber; } private void buildTrie(int num,Trie root){ Stack<Integer> stack = new Stack(); while(num>0){ stack.push(num%10); num=num/10; } while(!stack.isEmpty()){ int curr = stack.pop(); if(root.children[curr]==null) root.children[curr] = new Trie(); root=root.children[curr]; } root.isNumber=true; } }
Given a list of folders folder
, return the folders after removing all sub-folders in those folders. You may return the answer in any order.
If a folder[i]
is located within another folder[j]
, it is called a sub-folder of it.
The format of a path is one or more concatenated strings of the form: '/'
followed by one or more lowercase English letters.
"/leetcode"
and "/leetcode/problems"
are valid paths while an empty string and "/"
are not. Example 1:
Input: folder = ["/a","/a/b","/c/d","/c/d/e","/c/f"] Output: ["/a","/c/d","/c/f"] Explanation: Folders "/a/b/" is a subfolder of "/a" and "/c/d/e" is inside of folder "/c/d" in our filesystem.
Example 2:
Input: folder = ["/a","/a/b/c","/a/b/d"] Output: ["/a"] Explanation: Folders "/a/b/c" and "/a/b/d/" will be removed because they are subfolders of "/a".
Example 3:
Input: folder = ["/a/b/c","/a/b/ca","/a/b/d"] Output: ["/a/b/c","/a/b/ca","/a/b/d"]
Constraints:
1 <= folder.length <= 4 * 104
2 <= folder[i].length <= 100
folder[i]
contains only lowercase letters and '/'
.folder[i]
always starts with the character '/'
.class Solution { public List<String> removeSubfolders(String[] folder) { //1.build Trie root = new Trie(); for(String s:folder) build(root,s); //2.traverse List<String> result = new ArrayList(); traversal(root,result,""); return result; } private void traversal(Trie root,List<String> result,String path){ for(String key:root.children.keySet()){ Trie val = root.children.get(key); if(val.isPath) result.add(path+"/"+key); else traversal(val,result,path+"/"+key); } } private void build(Trie root,String s){ String[] arr = s.substring(1).split("/"); for(String str:arr){ Trie sub = root.children.get(str); if(sub==null) sub = new Trie(); root.children.put(str,sub); root = sub; } root.isPath=true; } class Trie{ Map<String,Trie> children = new HashMap(); boolean isPath; } }