1、灰度图像二值化
import cv2 img_input = cv2.imread('cameraman.tif', cv2.IMREAD_GRAYSCALE) # 当阈值较大时,会使得像素值低于160的像素点被划分为黑色 ret, im_binary = cv2.threshold(img_input, 160, 255, cv2.THRESH_BINARY) # 显示图像 cv2.imshow("input",img_input) cv2.imshow("output",im_binary) # 等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
2、图像反转
import cv2 img = cv2.imread('lena_gray_256.tif') # 前头加 r 是消除反斜杠转义 reverse_img = 255 - img # 显示图像 cv2.imshow("input",img) cv2.imshow("output",reverse_img) # 等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
3、对数变换
import cv2 import numpy as np img_input = cv2.imread('pollens.tif') # 其中21为尺度比例常数,可按实际情况进行修改 img_output = 21*np.log(1.0+ img_input) img_output = np.uint8(img_output +0.5) # 显示图像 cv2.imshow("input",img_input) # 等待显示 cv2.waitKey(0) cv2.destroyAllWindows() cv2.imshow("output",img_output) # 等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
4、图像加法
import cv2 img_input1 = cv2.imread('cameraman_256.tif') img_input2 = cv2.imread('lena_gray_256.tif') reverse_img = cv2.add(img_input1, img_input2) # 显示图像 cv2.imshow("reverse_img",reverse_img) # 等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
5、图像减法
import cv2 img_input1 = cv2.imread('lena_gray_256.tif') img_input2 = cv2.imread('cameraman_256.tif') reverse_img = cv2.subtract(img_input1, img_input2) # 显示图像 cv2.imshow("reverse_img",reverse_img) # 等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
6、图像融合
# 图像融合中,图像大小要相同 import cv2 src1 = cv2.imread('lena_color_512.tif') src2 = cv2.imread('peppers_color.tif') # 0.4、0.6为对应图像融合比例,100为亮度 result = cv2.addWeighted(src1, 0.4, src2, 0.6, 100) # 显示图像 cv2.imshow("result",result) # 等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
7、直方图均衡化
import cv2 img = cv2.imread('Fig1027(a).tif', cv2.IMREAD_GRAYSCALE) equ = cv2.equalizeHist(img) # 显示图像 cv2.imshow("input",img) cv2.imshow("output",equ) # 等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
8、图像平滑(均值滤波、中值滤波、高斯滤波)
import cv2 img = cv2.imread('lena_color_512_saltpepper.jpg ') # 读取图片 result_blur = cv2.blur(img, (3, 3)) #均值滤波 result_GaussianBlur = cv2.GaussianBlur(img, (3, 3), 0) # 高斯滤波 result_medianBlur = cv2.medianBlur(img, 3) # 中值滤波 cv2.imshow('original', img) cv2.imshow('result_blur', result_blur) cv2.imshow('result_GaussianBlur', result_GaussianBlur) cv2.imshow('result_medianBlur', result_medianBlur) cv2.waitKey(0)
9、图像锐化 拉普拉斯模板(线性)
import cv2 import numpy as np src = cv2.imread('circuit.tif') kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) dst = cv2.filter2D(src, -1, kernel) cv2.imshow('original', src) cv2.imshow('dst', dst) cv2.imshow('src+dst', src+dst) cv2.waitKey(0) cv2.destroyAllWindows()
10、图像锐化 梯度模板(非线性)
import cv2 import numpy as np src = cv2.imread('lena_gray_256.tif') sobelx = cv2.Sobel(src, cv2.CV_64F, 1, 0) sobely = cv2.Sobel(src, cv2.CV_64F, 0, 1) sobelx = cv2.convertScaleAbs(sobelx) sobely = cv2.convertScaleAbs(sobely) sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0) cv2.imshow("original", src) cv2.imshow("xy", sobelxy) cv2.imshow("original+xy", src+sobelxy) cv2.waitKey(0) cv2.destroyAllWindows()