投影的串接定律:
Π
A
1
.
.
.
.
A
n
(
Π
B
1
.
.
.
B
m
(
E
)
)
=
Π
A
1
.
.
.
A
n
(
E
)
\Pi_{A_1....A_n}(\Pi_{B_1...B_m}(E))=\Pi_{A_1...A_n}(E)
ΠA1....An(ΠB1...Bm(E))=ΠA1...An(E)
选择的串接律(合并条件):
σ
F
1
(
σ
F
2
(
E
)
)
=
σ
F
1
∧
F
2
(
E
)
\sigma_{F_1}(\sigma_{F_2}(E))=\sigma_{F_1\wedge F_2}(E)
σF1(σF2(E))=σF1∧F2(E)
选择与其他操作的交换律:
假设相同属性同名
σ
F
(
E
1
×
E
2
)
=
σ
F
(
E
1
)
×
σ
F
(
E
2
)
\sigma_F(E_1\times E_2) = \sigma_F(E_1)\times\sigma_F(E_2)
σF(E1×E2)=σF(E1)×σF(E2),这个是否含有相应属性而选择
σ
F
(
E
1
∪
E
2
)
=
σ
F
(
E
1
)
∪
σ
F
(
E
2
)
\sigma_F(E_1\cup E_2) = \sigma_F(E_1)\cup \sigma_F(E_2)
σF(E1∪E2)=σF(E1)∪σF(E2)
σ
F
(
E
1
−
E
2
)
=
σ
F
(
E
1
)
−
σ
F
(
E
2
)
\sigma_F(E_1 - E_2) = \sigma_F(E_1)- \sigma_F(E_2)
σF(E1−E2)=σF(E1)−σF(E2)
σ
F
(
E
1
⋈
E
2
)
=
σ
F
(
E
1
)
⋈
σ
F
(
E
2
)
\sigma_F(E_1\Join E_2) = \sigma_F(E_1)\Join\sigma_F(E_2)
σF(E1⋈E2)=σF(E1)⋈σF(E2),
F
F
F 只涉及公共属性
投影和其他操作的交换律
Π
A
1
.
.
.
A
n
,
B
1
.
.
.
B
m
(
E
1
×
E
2
)
=
Π
A
1
.
.
.
A
n
(
E
1
)
×
Π
B
1
.
.
.
B
m
(
E
2
)
\Pi_{A_1...A_n,B_1...B_m}(E_1\times E_2) = \Pi_{A_1...A_n}(E_1)\times \Pi_{B_1...B_m}(E_2)
ΠA1...An,B1...Bm(E1×E2)=ΠA1...An(E1)×ΠB1...Bm(E2)
Π
A
1
.
.
.
A
n
(
E
1
∪
E
2
)
=
Π
A
1
.
.
.
A
n
(
E
1
)
∪
Π
A
1
.
.
.
A
n
(
E
2
)
\Pi_{A_1...A_n}(E_1\cup E_2) = \Pi_{A_1...A_n}(E_1)\cup \Pi_{A_1...A_n}(E_2)
ΠA1...An(E1∪E2)=ΠA1...An(E1)∪ΠA1...An(E2),假设相同属性 名字相同