洛谷
在一张图上,有 \(k\) 条边可以免代价,求 \(s\) 到 \(t\) 的最短路。
这是分层图最短路板子。建 \(k\) 层图,上一层到本次的边权为 \(0\)。很好理解。
const int N = 1e6 + 10, M = 5e6 + 10; inline ll Read() { ll x = 0, f = 1; char c = getchar(); while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') f = -f, c = getchar(); while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar(); return x * f; } int n, m, k, s, t; struct edge { int to, nxt, val; }e[M]; int head[N], tot; void add(int u, int v, int w) { e[++tot] = (edge) {v, head[u], w}, head[u] = tot; } struct node { int val, key; bool operator < (const node &a) const { return key > a.key; } }; priority_queue <node> q; int dis[N]; bool vis[N]; void dij() { memset (dis, 127 / 3, sizeof dis); dis[s] = 0; q.push((node){ s, 0 }); while (!q.empty()) { int u = q.top().val; q.pop(); if (vis[u]) continue; vis[u] = 1; for (int i = head[u]; i; i = e[i].nxt) { if (!vis[e[i].to] && dis[u] + e[i].val < dis[e[i].to]) { dis[e[i].to] = dis[u] + e[i].val; q.push((node){ e[i].to, dis[u] + e[i].val }); } } } } int main() { // freopen(".in", "r", stdin); // freopen(".out", "w", stdout); n = Read(), m = Read(), k = Read(); s = Read(), t = Read(); for (int i = 1; i <= m; i++) { int u = Read(), v = Read(), w = Read(); add (u, v, w), add (v, u, w); for (int j = 1; j <= k; j++) { add (u + j * n, v + j * n, w); add (v + j * n, u + j * n, w); add (u + (j - 1) * n, v + j * n, 0); add (v + (j - 1) * n, u + j * n, 0); } } dij (); int ans = 1e9; for (int i = 0; i <= k; i++) ans = min (ans, dis[i * n + t]); printf ("%d", ans); return 0; }