定义: 如果\(a\%m = b\%m\),则 \(a\) 与 \(b\) 模 \(m\) 同余, \(m\) 为正整数,记作 \(a\equiv b\pmod m\)
同余类: 对于 \(\forall a \subset [0, m-1]\) ,集合 \({a+km}(k\subset Z)\) 的所有模 \(m\) 同余,余数都是 \(a\)。该集合就是一个模 \(m\) 的同余类,记为 \(\bar{a}\)。
完全剩余系: 模 \(m\) 的同余类一共有 \(m\) 个,分别为 \(\bar{1},\bar{2},\dots,\overline{m-1}\) ,是一个完全剩余系。
简化剩余系: \(1~m\) 中与 \(m\) 互质的数代表的同余类共有\(\varphi(m)\) 个,它们构成 \(m\) 的简化剩余系,例如,模 \(10\) 的简化剩余系为 \({\bar{1}, \bar{3}, \bar{7}, \bar{9}}\) 。( \(\varphi(n)\) 大小为小于 \(n\) 的所有与 \(n\) 互质的正整数个数)
若 \(a, b(1 ≤ a,b ≤ m)\) 与 \(m\) 互质, 则 \(a*b\) 与 \(m\) 也互质,也能属于 \(m\) 的简化剩余系。
费马小定理: 若 \(p\) 是质数,则对于任意整数 \(a\),有 \(a^p\equiv a\pmod p\)。
欧拉定理: 若正整数 \(a,n\) 互质,则 \(a^{\varphi(n)}\equiv 1\pmod n\),其中 \(\varphi(n)\) 为欧拉函数。
(证明略)
其中,若 \(p\) 是一个质数,则 \(\varphi(p) = p - 1\)。
欧拉定理的推论: 若正整数 \(a,n\) 互质,则对于任意正整数 \(b\),有 \(a^b\equiv a^{b\mod \varphi(n)}\pmod n\)。
对答案取模 \(p\) 的应用技巧:
此题由欧拉函数引出一个推理:
此题启发点:
\(Bezout\) 定理:对于任意整数 \(a,b\) ,存在一对整数 \(x,y\), 满足 \(ax+by=gcd(a,b)\)。
乘法逆元:
加法原理: 完成一件事有 \(n\) 类方法,其中第 \(i\) 类方法包括 \(a_i\) 种不同的方法,且方法之间相互独立,则完成这件事共有 \(a_1+a_2+\ldots+a_n\) 种不同方法。
乘法原理: 完成一件事要 \(n\) 个步骤,其中第 \(i\) 个步骤有 \(a_i\) 种不同的方法,方法、步骤之间相互独立,则完成这件事共有 \(a_1*a_2*\cdots*a_n\) 种不同方法。
排列数: 从 \(n\) 个不同元素中依次取出 \(m\) 个元素排成一列,产生的不同排列的数量为:
\[A_n^m(也可记作P_n^m)=\frac{n!}{(n-m)!}=n*(n-1)*\cdots*(n-m+1) \]组合数: 从 \(n\) 个不同的元素中取出 \(m\) 个组成一个集合(无顺序),产生的不同集合数量为:
\[C_n^m=\frac{n!}{m!(n-m)!}=\frac{n*(n-1)*\cdots*(n-m+1)}{m*(m-1)*\cdots*2*1} \]组合数性质: