一个垃圾收集器除了垃圾收集这个本职工作之外,它还要负责堆的管理与布局、对象的分配、与解释器的协作、与编译器的协作、与监控子系统协作等职责,其中至少堆的管理和对象的分配这部分功能是Java虚拟机能够正常运作的必要支持,是一个最小化功能的垃圾收集器也必须实现的内容。
垃圾收集关注的是堆和方法区的内存如何管理。
程序计数器、虚拟机栈、本地方法栈3个区域随线程而生,随线程而灭,栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作。每一个栈帧中分配多少内存基本上是在类结构确定下来时就已知的(尽管在运行期会由即时编译器进行一些优化,但在基于概念模型的讨论里,大体上可以认为是编译期可知的),因此这几个区域的内存分配和回收都具备确定性,在这几个区域内就不需要过多考虑如何回收的问题,当方法结束或者线程结束时,内存自然就跟随着回收了。
引用计数算法
在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。
客观来说,这种方法只需要占据一部分额外内存即可实现进行计数,微软COM技术,Python语言等等一些应用中都有引用计数法进行内存管理。但是Java的主流虚拟机都没有选用这种算法,因为有很多例外情况需要判断,比如说单纯的引用计数很难解决对象之间相互引用的问题。(A->B,B->A这样的话双方计数器都为1,除此之外再无引用,也不被访问)
可达性分析算法
当前主流的商用程序语言(Java、C#,上溯至前面提到的古老的Lisp)的内存管理子系统,都是通过可达性分析(Reachability Analysis)算法来判定对象是否存活的。这个算法的基本思路就是通过一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”(Reference Chain),如果某个对象到GC Roots间没有任何引用链相连,或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。
Java中,可固定作GC Roots的对象有:虚拟机栈中引用的对象,方法区中类静态属性引用的对象,方法区中常量引用的对象,本地方法栈中JNI引用的对象,所有被同步锁持有的对象,反应JVM内部情况的JMXBean,JVMTI中注册的回调,本地代码缓存等。
根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。
JDK1.2之前,Java中只有“被引用”和“未被引用”两种状态。
JDK1.2之后,引用分为:强引用(Strongly Re-ference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。
- 强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。
- 软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK 1.2版之后提供了SoftReference类来实现软引用。
- 弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2版之后提供了WeakReference类来实现弱引用。
- 虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2版之后提供了PhantomReference类来实现虚引用。
关于对象的死亡状态
即使在可达性分析算法中判定为不可达的对象,也不是“非死不可”的,这时候它们暂时还处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记,随后进行一次筛选,筛选的条件是此对象是否有必要执行finalize()
方法。假如对象没有覆盖finalize()
方法,或者finalize()
方法已经被虚拟机调用过,那么虚拟机将这两种情况都视为“没有必要执行”。
假设一个对象被判定为需要执行finalize()
,则该对象将会被放置在一个F-Queue
队列中,并且该队列中的对象将会被一个低优先级的Finalizer
线程去执行它们的finalize()
方法。注意,执行该方法的时候并不会等待该方法结束,因为如果某个对象的finalize()
执行缓慢,甚至发生死循环,将会导致F-Queue
中的其他对象永久处于等待状态,甚至导致整个内存回收子系统的崩溃。
finalize()
方法是对象逃离死亡命运的最后一次机会,稍后收集器将会对等待队列中的对象进行第二次小规模的标记,如果对象在finalize()
方法中拯救了自己——重新与引用链上任何一个对象建立关联即可。
@Override protected void finalize() throws Throwable { super.finalize(); System.out.println("finalize method executed!"); FinalizeEscapeGC.SAVE_HOOK = this; //该对象被引用 }
可以通过重写finalize()
方法实现拯救一个对象。(对于一个对象,finalize()
方法只会被系统调用一次)
不建议使用
finalize()
方法进行拯救函数,通过try-finally或者其他工作方式都可以做到。
方法区的垃圾收集主要回收两部分内容:废弃的常量和不再使用的类型。回收废弃常量与回收Java堆中的对象非常类似。
判断一个废弃常量和回收堆中对象类似:举例,常量池中有“java”字符串,如果当前系统中没有任何一个字符串对象的值为“java”,且虚拟机中也没有其他地方引用此常量,这时候发生内存回收且垃圾收集器判断确有必要的话,这个“java”常量将会被系统清理出常量池。常量池中其他类也类似。
判断一个类型是否属于“不再使用的类”的条件比较苛刻,需要同时满足下面三个条件:
Java虚拟机被允许对满足上述三个条件的无用类进行回收,这里说的仅仅是“被允许”,而并不是和对象一样,没有引用了就必然会回收。关于是否要对类型进行回收,HotSpot虚拟机提供了-Xnoclassgc参数进行控制,还可以使用-verbose:class以及-XX:+TraceClass-Loading、-XX:+TraceClassUnLoading查看类加载和卸载信息,其中-verbose:class和-XX:+TraceClassLoading可以在Product版的虚拟机中使用,-XX+TraceClassUnLoading参数需要FastDebug版的虚拟机支持。
在大量使用反射、动态代理、CGLib等字节码框架,动态生成JSP以及OSGi这类频繁自定义类加载器的场景中,通常都需要Java虚拟机具备类型卸载的能力,以保证不会对方法区造成过大的内存压力。
从如何判定对象消亡的角度出发,垃圾收集算法可以划分为“引用计数式垃圾收集”(Reference Counting GC)和“追踪式垃圾收集”(Tracing GC)两大类,这两类也常被称作“直接垃圾收集”和“间接垃圾收集”。不过主流虚拟机中均采用的是追踪式垃圾收集。
两个分代假说:
这两个分代假说奠定了多款常用的垃圾收集器的一致的设计原则:将Java堆划分出不同的区域,然后将回收对象依据其年龄(年龄即对象熬过垃圾收集过程的次数)分配到不同的区域中存储。
如果一个区域中大多数对象都是朝生夕灭,难以熬过垃圾收集过程的话,那么把它们集中放在一起,每次回收时只关注如何保留少量存活而不是去标记那些大量将要被回收的对象,就能以较低代价回收到大量的空间;如果剩下的都是难以消亡的对象,那把它们集中放在一块,虚拟机便可以使用较低的频率来回收这个区域,这就同时兼顾了垃圾收集的时间开销和内存的空间有效利用。
现在的商用Java虚拟机里,设计者一般至少会把Java堆划分为新生代(Young Generation)和老年代(Old Generation)两个区域。在新生代中,每次垃圾收集时都发现有大批对象死去,而每次回收后存活的少量对象,将会逐步晋升到老年代中存放。
但是分代收集并非只是简单的划分内存区域,假如说要进行一次新生代区域内的收集,新生代区域内的对象是有可能被老年代引用的,因此除了固定的GC Roots外,还需要对老年代的所有对象进行一次遍历来确保可达性分析结果的正确性。这样的话会对内存回收带来很大的性能负担。因此分代收集理论添加了第三条经验法则:
跨代引用假说(Intergenerational Reference Hypothesis)
:跨代引用相对于同代引用来说仅占极少数。
存在互相引用关系的两个对象,是应该倾向于同时生存或者同时消亡的。举个例子,如果某个新生代对象存在跨代引用,由于老年代对象难以消亡,该引用会使得新生代对象在收集时同样得以存活,进而在年龄增长之后晋升到老年代中,这时跨代引用也随即被消除了。
依据这条假说,我们就不应再为了少量的跨代引用去扫描整个老年代,也不必浪费空间专门记录每一个对象是否存在及存在哪些跨代引用,只需在新生代上建立一个全局的数据结构(该结构被称为“记忆集”,Remembered Set),这个结构把老年代划分成若干小块,标识出老年代的哪一块内存会存在跨代引用。此后当发生Minor GC(只收集新生代)时,只有包含了跨代引用的小块内存里的对象才会被加入到GC Roots进行扫描。虽然这种方法需要在对象改变引用关系(如将自己或者某个属性赋值)时维护记录数据的正确性,会增加一些运行时的开销,但比起收集时扫描整个老年代来说仍然是划算的。
一些专有名词:
部分收集(Partial GC):指目标不是完整收集整个Java堆的垃圾收集,其中又分为:
整堆收集(Full GC):收集整个Java堆和方法区的垃圾收集。
值得注意的是,分代收集理论也有其缺陷,最新出现(或在实验中)的几款垃圾收集器都展现出了面向全区域收集设计的思想,或者可以支持全区域不分代的收集的工作模式。
算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。(标记即判断对象是否属于垃圾)
它的主要缺点有两个:第一个是执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低;第二个是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
算法执行过程:
将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
算法执行过程:
如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销,但对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进行内存回收,分配内存时也就不用考虑有空间碎片的复杂情况,只要移动堆顶指针,按顺序分配即可。这样实现简单,运行高效,不过其缺陷也显而易见,这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费未免太多了一点。
现在的商用Java虚拟机大多都优先采用了这种收集算法去回收新生代,IBM公司曾有一项专门研究对新生代“朝生夕灭”的特点做了更量化的诠释——新生代中的对象有98%熬不过第一轮收集。因此并不需要按照1∶1的比例来划分新生代的内存空间。
HotSpot虚拟机的Serial、ParNew等新生代收集器均采用了Appel式回收策略来设计新生代的内存布局[1]。Appel式回收的具体做法是把新生代分为一块较大的Eden空间和两块较小的Survivor空间,每次分配内存只使用Eden和其中一块Survivor。发生垃圾搜集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1。
Appel式回收还有一个充当罕见情况的“逃生门”的安全设计,当Survivor空间不足以容纳一次Minor GC之后存活的对象时,就需要依赖其他内存区域(实际上大多就是老年代)进行分配担保(Handle Promotion)。
标记-复制算法在面对存活率较高的情况时需要进行大量复制操作,效率将会降低。老年代一般不能直接选用这种算法。
标记-整理算法的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。
回收过程:
至于什么时候采取哪种算法,则需要根据情况讨论:
介绍一下吞吐量
吞吐量 = CPU在用户应用程序运行的时间 / (CPU在用户应用程序运行的时间 + CPU垃圾回收的时间)
程序运行时间可以理解为内存分配和访问的时间(还有其他的操作)。
标记-清除算法,即使不移动对象会使得收集器的效率提升一些,但因内存分配和访问相比垃圾收集频率要高得多,这部分的耗时增加,总吞吐量仍然是下降的。
HotSpot虚拟机里面关注吞吐量的Parallel Scavenge收集器是基于标记-整理算法的,而关注延迟的CMS收集器则是基于标记-清除算法的。
还有一种“和稀泥式”解决方案可以不在内存分配和访问上增加太大额外负担,做法是让虚拟机平时多数时间都采用标记-清除算法,暂时容忍内存碎片的存在,直到内存空间的碎片化程度已经大到影响对象分配时,再采用标记-整理算法收集一次,以获得规整的内存空间。前面提到的基于标记-清除算法的CMS收集器面临空间碎片过多时采用的就是这种处理办法。
固定可作为GC Roots的节点主要在全局性的引用(例如常量或类静态属性)与执行上下文(例如栈帧中的本地变量表)中,目前所有收集器在根节点枚举这一步骤时都是需要暂停用户线程的。
根节点枚举必须在一个能保障一致性的快照中才得以进行——这里“一致性”的意思是整个枚举期间执行子系统看起来就像被冻结在某个时间点上,不会出现分析过程中,根节点集合的对象引用关系还在不断变化的情况,若这点不能满足的话,分析结果准确性也就无法保证。
目前主流Java虚拟机使用的都是准确式垃圾收集,当用户线程停顿下来之后,并不需要一个不漏地检查完所有执行上下文和全局的引用位置,虚拟机应当是有办法直接得到哪些地方存放着对象引用的。在HotSpot的解决方案里,是使用一组称为OopMap的数据结构来达到这个目的。一旦类加载动作完成的时候,HotSpot就会把对象内什么偏移量上是什么类型的数据计算出来,在即时编译过程中,也会在特定的位置记录下栈里和寄存器里哪些位置是引用。这样收集器在扫描时就可以直接得知这些信息了,并不需要真正一个不漏地从方法区等GC Roots开始查找。
[Verified Entry Point] 0x026eb730: mov %eax,-0x8000(%esp) ………… ;; ImplicitNullCheckStub slow case 0x026eb7a9: call 0x026e83e0 ; OopMap{ebx=Oop [16]=Oop off=142} ; *caload ; - java.lang.String::hashCode@48 (line 1489) ; {runtime_call} 0x026eb7ae: push $0x83c5c18 ; {external_word} 0x026eb7b3: call 0x026eb7b8 0x026eb7b8: pusha 0x026eb7b9: call 0x0822bec0 ; {runtime_call} 0x026eb7be: hlt
String::hashCode()方法的本地代码,可以看到在0x026eb7a9处的call指令有OopMap记录,它指明了EBX寄存器和栈中偏移量为16的内存区域中各有一个普通对象指针(Ordinary Object Pointer,OOP)的引用,有效范围为从call指令开始直到0x026eb730(指令流的起始位置)+142(OopMap记录的偏移量)=0x026eb7be,即hlt指令为止。
对象引用的变化会导致OopMap的变化,但是我们不可能每条指令都进行更新,这样的话太过影响性能,因此通过设置安全点,避免频繁更新OopMap,只在达到安全点的位置才更新OopMap。用户线程在安全点停顿,GC在安全点进行,采取主动式中断,线程轮询中断标志位,当标志位为真时,在最近的安全点主动中断挂起。
安全点位置的选取基本上是以“是否具有让程序长时间执行的特征”为标准进行选定的,因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这样的原因而长时间执行,“长时间执行”的最明显特征就是指令序列的复用,例如方法调用、循环跳转、异常跳转等都属于指令序列复用,所以只有具有这些功能的指令才会产生安全点。
设置安全点之后,在用户线程执行过程中就会遇到安全点,进入到垃圾收集。但是当线程处于Sleep或Blocked状态时,CPU没有分配处理时间,线程无法响应虚拟机的中断请求,不能走到安全的地方中断挂起。这时就引入了安全区域。
安全区域是指能够确保在某一段代码片段之中,引用关系不会发生变化,因此,在这个区域中任意地方开始垃圾收集都是安全的。我们也可以把安全区域看作被扩展拉伸了的安全点。
当用户线程执行到安全区域里面的代码时,首先会标识自己已经进入了安全区域,那样当这段时间里虚拟机要发起垃圾收集时就不必去管这些已声明自己在安全区域内的线程了。当线程要离开安全区域时,它要检查虚拟机是否已经完成了根节点枚举(或者垃圾收集过程中其他需要暂停用户线程的阶段),如果完成了,那线程就当作没事发生过,继续执行;否则它就必须一直等待,直到收到可以离开安全区域的信号为止。
记忆集是一种用于记录从非收集区域指向收集区域的指针集合的抽象数据结构。
在垃圾收集的场景中,收集器只需要通过记忆集判断出某一块非收集区域是否存在有指向了收集区域的指针就可以了,并不需要了解这些跨代指针的全部细节。三种记录精度:
第三种“卡精度”所指的是用一种称为“卡表”(Card Table)的方式去实现记忆集。
卡表最简单的形式可以只是一个字节数组,而HotSpot虚拟机确实也是这样做的。以下这行代码是HotSpot默认的卡表标记逻辑:
CARD_TABLE [this address >> 9] = 0;
字节数组CARD_TABLE的每一个元素都对应着其标识的内存区域中一块特定大小的内存块,这个内存块被称作“卡页”(Card Page)。一般来说,卡页大小都是以2的N次幂的字节数,通过上面代码可以看出HotSpot中使用的卡页是2的9次幂,即512字节(地址右移9位,相当于用地址除以512)。那如果卡表标识内存区域的起始地址是0x0000的话,数组CARD_TABLE的第0、1、2号元素,分别对应了地址范围为0x0000~0x01FF、0x0200~0x03FF、0x0400~0x05FF的卡页内存块。建议用C中指针的概念进行理解。
一个卡页的内存中通常包含不止一个对象,只要卡页内有一个(或更多)对象的字段存在着跨代指针,那就将对应卡表的数组元素的值标识为1,称为这个元素变脏(Dirty),没有则标识为0。在垃圾收集发生时,只要筛选出卡表中变脏的元素,就能轻易得出哪些卡页内存块中包含跨代指针,把它们加入GC Roots中一并扫描。
写屏障
卡表元素变脏的时刻,即该时刻有其他分代区域的对象引用了当前区域对象,该如何更新卡表元素呢?
HotSpot虚拟机里是通过写屏障(Write Barrier)技术维护卡表状态。
写屏障可以看作在虚拟机层面对“引用类型字段赋值”这个动作的AOP切面,在引用对象赋值时会产生一个环形(Around)通知,供程序执行额外的动作,也就是说赋值的前后都在写屏障的覆盖范畴内。在赋值前的部分的写屏障叫作写前屏障(Pre-Write Barrier),在赋值后的则叫作写后屏障(Post-Write Barrier)。
应用写屏障后,虚拟机就会为所有赋值操作生成相应的指令,一旦收集器在写屏障中增加了更新卡表操作,无论更新的是不是老年代对新生代对象的引用,每次只要对引用进行更新,就会产生额外的开销,不过这个开销与Minor GC时扫描整个老年代的代价相比还是低得多的。
假设处理器的缓存行大小为64字节,由于一个卡表元素占1个字节,64个卡表元素将共享同一个缓存行。这64个卡表元素对应的卡页总的内存为32KB(64×512字节),也就是说如果不同线程更新的对象正好处于这32KB的内存区域内,就会导致更新卡表时正好写入同一个缓存行而影响性能。为了避免伪共享问题,一种简单的解决方案是不采用无条件的写屏障,而是先检查卡表标记,只有当该卡表元素未被标记过时才将其标记为变脏,代码如下:
if (CARD_TABLE [this address >> 9] != 0) CARD_TABLE [this address >> 9] = 0;
在JDK 7之后,HotSpot虚拟机增加了一个新的参数-XX:+UseCondCardMark,用来决定是否开启卡表更新的条件判断。开启会增加一次额外判断的开销,但能够避免伪共享问题,两者各有性能损耗,是否打开要根据应用实际运行情况来进行测试权衡。
可达性分析算法理论上要求全过程都基于一个能保障一致性的快照中才能够进行分析,这意味着必须全程冻结用户线程的运行。在根节点枚举这个步骤中,由于GC Roots相比起整个Java堆中全部的对象毕竟还算是极少数,且在各种优化技巧(如OopMap)的加持下,它带来的停顿已经是非常短暂且相对固定(不随堆容量而增长)的了。可从GC Roots再继续往下遍历对象图,这一步骤的停顿时间就必定会与Java堆容量直接成正比例关系了:堆越大,存储的对象越多,对象图结构越复杂,要标记更多对象而产生的停顿时间自然就更长,这听起来是理所当然的事情。
引入三色标记:
并发情况下,可达性分析是可能出现问题的,造成“对象消失”,这个问题没有赘述,可以自己查资料。
造成该问题需要满足以下两个条件:
解决并发扫描时对象消失的问题,有两种解决方案:增量更新和原始快照。
增量更新要破坏的是第一个条件,当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用记录下来,等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根,重新扫描一次。这可以简化理解为,黑色对象一旦新插入了指向白色对象的引用之后,它就变回灰色对象了。
原始快照要破坏的是第二个条件,当灰色对象要删除指向白色对象的引用关系时,就将这个要删除的引用记录下来,在并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。这也可以简化理解为,无论引用关系删除与否,都会按照刚刚开始扫描那一刻的对象图快照来进行搜索。
以上无论是对引用关系记录的插入还是删除,虚拟机的记录操作都是通过写屏障实现的。在HotSpot虚拟机中,增量更新和原始快照这两种解决方案都有实际应用,譬如,CMS是基于增量更新来做并发标记的,G1、Shenandoah则是用原始快照来实现。
Serial收集器
:单线程工作的收集器,在它进行垃圾收集时,必须暂停其他工作线程,直至收集结束。
迄今为止,它依然是HotSpot虚拟机运行在客户端模式下的默认新生代收集器
优点:简单高效,目前在用户桌面的应用场景以及近年流行的部分微服务应用中使用,因为这些应用分配给虚拟机管理的内存一般来说不会很大,几十兆甚至一两百兆的新生代,垃圾收集的停顿时间可控在十几,几十毫秒,不影响体验。
ParNew收集器
实质上是Serial收集器的多线程并行版本。
除了同时使用多条线程进行垃圾收集之外,其余的行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio、-XX:PretenureSizeThreshold、-XX:HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一致,
它是不少运行在服务端模式下的HotSpot虚拟机,尤其是JDK 7之前的遗留系统中首选的新生代收集器,其中有一个与功能、性能无关但其实很重要的原因是:除了Serial收集器外,目前只有它能与CMS收集器配合工作。
而G1是一个面向全堆的收集器,不再需要其他新生代收集器的配合工作。自JDK 9开始,ParNew加CMS收集器的组合就不再是官方推荐的服务端模式下的收集器解决方案了。
Parallel Scavenge
收集器
新生代收集器,基于标记-复制算法实现,关注吞吐量。
垃圾收集停顿时间越短就越适合需要与用户交互或需要保证服务响应质量的程序,良好的响应速度能提升用户体验;而高吞吐量则可以最高效率地利用处理器资源,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的分析任务。
Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。
具有自适应调节策略:-XX:+UseAdaptiveSizePolicy(开关)
Serial Old
收集器
Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。这个收集器的主要意义也是供客户端模式下的HotSpot虚拟机使用。如果在服务端模式下,它也可能有两种用途:一种是在JDK 5以及之前的版本中与Parallel Scavenge收集器搭配使用,另外一种就是作为CMS收集器发生失败时的后备预案,在并发收集发生Concurrent Mode Failure时使用。
Parallel Old
收集器
Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。这个收集器是直到JDK 6时才开始提供的。直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的搭配组合,在注重吞吐量或者处理器资源较为稀缺的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器这个组合。
CMS
收集器(Concurrent Mark Sweep)
一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求。
它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:
1)初始标记(CMS initial mark)
2)并发标记(CMS concurrent mark)
3)重新标记(CMS remark)
4)并发清除(CMS concurrent sweep)
其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快;并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录(关于增量更新的讲解),这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。
由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。
优点:并发收集、低停顿。
缺点:
G1
收集器
G1收集器是垃圾收集器技术发展历史上的里程碑式的成果。G1是一款主要面向服务端应用的垃圾收集器。JDK 9发布之日,G1宣告取代Parallel Scavenge加Parallel Old组合,成为服务端模式下的默认垃圾收集器,而CMS则沦落至被声明为不推荐使用(Deprecate)的收集器。从整体来看是基于“标记-整理”算法实现的,从局部来看是基于“标记-复制”算法实现的。
G1面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。可指定停顿时间。G1关注于吞吐量和延迟之间的平衡。
G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。
Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待。
G1仍保留新生代和老年代的概念,但是新生代和老年代不再是固定的了,它们是一系列区域的动态集合。
G1收集器之所以能建立可预测的停顿时间模型,是因为它将Region作为单次回收的最小单元,即每次收集到的内存空间都是Region大小的整数倍,这样可以有计划地避免在整个Java堆中进行全区域的垃圾收集。更具体的处理思路是让G1收集器去跟踪各个Region里面的垃圾堆积的“价值”大小,
价值即回收所获得的空间大小以及回收所需时间的经验值
,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间(使用参数-XX:MaxGCPauseMillis指定,默认值是200毫秒),优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。
将Java堆分成多个独立Region后,Region里面存在的跨Region引用对象如何解决?解决的思路我们已经知道:使用记忆集避免全堆作为GC Roots扫描,但在G1收集器上记忆集的应用其实要复杂很多,它的每个Region都维护有自己的记忆集,这些记忆集会记录下别的Region指向自己的指针,并标记这些指针分别在哪些卡页的范围之内。G1的记忆集在存储结构的本质上是一种哈希表,Key是别的Region的起始地址,Value是一个集合,里面存储的元素是卡表的索引号。这种“双向”的卡表结构(卡表是“我指向谁”,这种结构还记录了“谁指向我”)比原来的卡表实现起来更复杂,同时由于Region数量比传统收集器的分代数量明显要多得多,因此G1收集器要比其他的传统垃圾收集器有着更高的内存占用负担。根据经验,G1至少要耗费大约相当于Java堆容量10%至20%的额外内存来维持收集器工作。
另外,面对垃圾收集过程中,用户改变对象引用关系时,G1采用原始快照算法实现。
此外,垃圾收集对用户线程的影响还体现在回收过程中新创建对象的内存分配上,程序要继续运行就肯定会持续有新对象被创建,G1为每一个Region设计了两个名为TAMS(Top at Mark Start)的指针,把Region中的一部分空间划分出来用于并发回收过程中的新对象分配,并发回收时新分配的对象地址都必须要在这两个指针位置以上。G1收集器默认在这个地址以上的对象是被隐式标记过的,即默认它们是存活的,不纳入回收范围。与CMS中的“Concurrent Mode Failure”失败会导致Full GC类似,如果内存回收的速度赶不上内存分配的速度,G1收集器也要被迫冻结用户线程执行,导致Full GC而产生长时间“Stop The World”。
收集过程:
G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的,换言之,它并非纯粹地追求低延迟,官方给它设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才能担当起“全功能收集器”的重任与期望。而增加停顿时间能最大程度地提高垃圾收集的效果。
从G1开始,最先进的垃圾收集器的设计导向都不约而同地变为追求能够应付应用的内存分配速率(Allocation Rate),而不追求一次把整个Java堆全部清理干净。这样,应用在分配,同时收集器在收集,只要收集的速度能跟得上对象分配的速度,那一切就能运作得很完美。这种新的收集器设计思路从工程实现上看是从G1开始兴起的,所以说G1是收集器技术发展的一个里程碑。
相比CMS,G1的优点有很多,暂且不论可以指定最大停顿时间、分Region的内存布局、按收益动态确定回收集这些创新性设计带来的红利,单从最传统的算法理论上看,G1也更有发展潜力。与CMS的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集。
比起CMS,G1的弱项也可以列举出不少,如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载(Overload)都要比CMS要高。
CMS和G1的对比
就内存占用来说,虽然G1和CMS都使用卡表来处理跨代指针,但G1的卡表实现更为复杂,而且堆中每个Region,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间;相比起来CMS的卡表就相当简单,只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要,由于新生代的对象具有朝生夕灭的不稳定性,引用变化频繁,能省下这个区域的维护开销是很划算的。
在执行负载的角度上,同样由于两个收集器各自的细节实现特点导致了用户程序运行时的负载会有不同,譬如它们都使用到写屏障,CMS用写后屏障来更新维护卡表;而G1除了使用写后屏障来进行同样的(由于G1的卡表结构复杂,其实是更烦琐的)卡表维护操作外,为了实现原始快照搜索(SATB)算法,还需要使用写前屏障来跟踪并发时的指针变化情况。相比起增量更新算法,原始快照搜索能够减少并发标记和重新标记阶段的消耗,避免CMS那样在最终标记阶段停顿时间过长的缺点,但是在用户程序运行过程中确实会产生由跟踪引用变化带来的额外负担。由于G1对写屏障的复杂操作要比CMS消耗更多的运算资源,所以CMS的写屏障实现是直接的同步操作,而G1就不得不将其实现为类似于消息队列的结构,把写前屏障和写后屏障中要做的事情都放到队列里,然后再异步处理。
浅色表示用户线程挂起,深色为并发。
经典垃圾收集器中还有ZGC,Shenandoah等,JDK11中默认使用的就是ZGC。
在本篇中,很多涉及虚拟机的具体参数并未提及,可参考其他博客。
Java技术体系的自动内存管理,最根本的目标是自动化地解决两个问题:自动给对象分配内存以及自动回收分配给对象的内存。验证的实际是使用Serial加Serial Old客户端默认收集器组合下的内存分配和回收的策略。
大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。HotSpot虚拟机提供了-XX:+PrintGCDetails这个收集器日志参数,告诉虚拟机在发生垃圾收集行为时打印内存回收日志,并且在进程退出的时候输出当前的内存各区域分配情况。
private static final int _1MB = 1024 * 1024; /** * VM参数:-verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 分配 20M 虚拟机运行内存,10M新生代,10M老年代,运行日志,Eden:Survivor=8:1 */ public static void testAllocation() { byte[] allocation1, allocation2, allocation3, allocation4; allocation1 = new byte[2 * _1MB]; allocation2 = new byte[2 * _1MB]; allocation3 = new byte[2 * _1MB]; allocation4 = new byte[4 * _1MB]; // 出现一次Minor GC,这时6MB的1,2,3转移到老年代,4M的进入Eden }
[GC [DefNew: 6651K->148K(9216K), 0.0070106 secs] 6651K->6292K(19456K), 0.0070426 secs][Times:user=0.00 sys=0.00.... Heap def new generation total 9216K, used 4326K [0x029d0000, 0x033d0000, 0x033d0000) eden space 8192K, 51% used [0x029d0000, 0x02de4828, 0x031d0000) from space 1024K, 14% used [0x032d0000, 0x032f5370, 0x033d0000) to space 1024K, 0% used [0x031d0000, 0x031d0000, 0x032d0000) tenured generation total 10240K, used 6144K [0x033d0000, 0x03dd0000, 0x03dd0000) the space 10240K, 60% used [0x033d0000, 0x039d0030, 0x039d0200, 0x03dd0000) compacting perm gen total 12288K, used 2114K [0x03dd0000, 0x049d0000, 0x07dd0000) the space 12288K, 17% used [0x03dd0000, 0x03fe0998, 0x03fe0a00, 0x049d0000) No shared spaces configured.
日志如上。
执行testAllocation()中分配allocation4对象的语句时会发生一次Minor GC,这次回收的结果是新生代6651KB变为148KB,而总内存占用量则几乎没有减少(因为allocation1、2、3三个对象都是存活的,虚拟机几乎没有找到可回收的对象)。产生这次垃圾收集的原因是为allocation4分配内存时,发现Eden已经被占用了6MB,剩余空间已不足以分配allocation4所需的4MB内存,因此发生Minor GC。垃圾收集期间虚拟机又发现已有的三个2MB大小的对象全部无法放入Survivor空间(Survivor空间只有1MB大小),所以只好通过分配担保机制提前转移到老年代去。
大对象就是指需要大量连续内存空间的Java对象,最典型的大对象便是那种很长的字符串,或者元素数量很庞大的数组,上面例子中的byte[]数组就是典型的大对象
在Java虚拟机中要避免大对象的原因是,在分配空间时,它容易导致内存明明还有不少空间时就提前触发垃圾收集,以获取足够的连续空间才能安置好它们,而当复制对象时,大对象就意味着高额的内存复制开销。
HotSpot虚拟机提供了-XX:PretenureSizeThreshold参数,指定大于该设置值的对象直接在老年代分配,这样做的目的就是避免在Eden区及两个Survivor区之间来回复制,产生大量的内存复制操作。
HotSpot虚拟机中多数收集器都采用了分代收集来管理堆内存,那内存回收时就必须能决策哪些存活对象应当放在新生代,哪些存活对象放在老年代中。为做到这点,虚拟机给每个对象定义了一个对象年龄(Age)计数器,存储在对象头中(详见对象的内存布局)。对象通常在Eden区里诞生,如果经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,该对象会被移动到Survivor空间中,并且将其对象年龄设为1岁。对象在Survivor区中每熬过一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15),就会被晋升到老年代中。对象晋升老年代的年龄阈值,可以通过参数-XX:MaxTenuringThreshold设置。
为了能更好地适应不同程序的内存状况,HotSpot虚拟机并不是永远要求对象的年龄必须达到-XX:MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到-XX:MaxTenuringThreshold中要求的年龄。
private static final int _1MB = 1024 * 1024; /** * VM参数:-verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=15 * -XX:+PrintTenuringDistribution */ @SuppressWarnings("unused") public static void testTenuringThreshold2() { byte[] allocation1, allocation2, allocation3, allocation4; allocation1 = new byte[_1MB / 4]; // allocation1+allocation2大于survivo空间一半 allocation2 = new byte[_1MB / 4]; allocation3 = new byte[4 * _1MB]; allocation4 = new byte[4 * _1MB]; allocation4 = null; allocation4 = new byte[4 * _1MB]; }
all1和all2加起来占用512KB,满足同年龄对象打到Suvivor空间一半的规则,因此将两个对象放入老年代。
在发生Minor GC之前,虚拟机必须先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那这一次Minor GC可以确保是安全的。如果不成立,则虚拟机会先查看-XX:HandlePromotionFailure参数的设置值是否允许担保失败(Handle Promotion Failure);如果允许,那会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试进行一次Minor GC,尽管这次Minor GC是有风险的;如果小于,或者-XX:HandlePromotionFailure设置不允许冒险,那这时就要改为进行一次Full GC。
解释一下“冒险”是冒了什么风险:前面提到过,新生代使用复制收集算法,但为了内存利用率,只使用其中一个Survivor空间来作为轮换备份,因此当出现大量对象在Minor GC后仍然存活的情况——最极端的情况就是内存回收后新生代中所有对象都存活,需要老年代进行分配担保,把Survivor无法容纳的对象直接送入老年代,这与生活中贷款担保类似。老年代要进行这样的担保,前提是老年代本身还有容纳这些对象的剩余空间,但一共有多少对象会在这次回收中活下来在实际完成内存回收之前是无法明确知道的,所以只能取之前每一次回收晋升到老年代对象容量的平均大小作为经验值,与老年代的剩余空间进行比较,决定是否进行Full GC来让老年代腾出更多空间。
取历史平均值来比较其实仍然是一种赌概率的解决办法,也就是说假如某次Minor GC存活后的对象突增,远远高于历史平均值的话,依然会导致担保失败。如果出现了担保失败,那就只好老老实实地重新发起一次Full GC,这样停顿时间就很长了。虽然担保失败时绕的圈子是最大的,但通常情况下都还是会将-XX:HandlePromotionFailure开关打开,避免Full GC过于频繁。
在JDK 6 Update 24之后,虽然源码中还定义了-XX:HandlePromotionFailure参数,但是在实际虚拟机中已经不会再使用它。JDK 6 Update 24之后的规则变为只要老年代的连续空间大于新生代对象总大小或者历次晋升的平均大小,就会进行Minor GC,否则将进行Full GC。