https://labuladong.gitee.io/algo/3/26/92/
读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:
121.买卖股票的最佳时机(简单)
122.买卖股票的最佳时机 II(简单)
123.买卖股票的最佳时机 III(困难)
188.买卖股票的最佳时机 IV(困难)
309.最佳买卖股票时机含冷冻期(中等)
714.买卖股票的最佳时机含手续费(中等)
———–
很多读者抱怨 LeetCode 的股票系列问题奇技淫巧太多,如果面试真的遇到这类问题,基本不会想到那些巧妙的办法,怎么办?所以本文拒绝奇技淫巧,而是稳扎稳打,只用一种通用方法解决所用问题,以不变应万变。
这篇文章参考 英文版高赞题解 的思路,用状态机的技巧来解决,可以全部提交通过。不要觉得这个名词高大上,文学词汇而已,实际上就是 DP table,看一眼就明白了。
先随便抽出一道题,看看别人的解法:
int maxProfit(vector<int>& prices) { if(prices.empty()) return 0; int s1 = -prices[0], s2 = INT_MIN, s3 = INT_MIN, s4 = INT_MIN; for(int i = 1; i < prices.size(); ++i) { s1 = max(s1, -prices[i]); s2 = max(s2, s1 + prices[i]); s3 = max(s3, s2 - prices[i]); s4 = max(s4, s3 + prices[i]); } return max(0, s4); }
能看懂吧?会做了吗?不可能的,你看不懂,这才正常。就算你勉强看懂了,下一个问题你还是做不出来。为什么别人能写出这么诡异却又高效的解法呢?因为这类问题是有框架的,但是人家不会告诉你的,因为一旦告诉你,你五分钟就学会了,该算法题就不再神秘,变得不堪一击了。
本文就来告诉你这个框架,然后带着你一道一道秒杀。这篇文章用状态机的技巧来解决,可以全部提交通过。不要觉得这个名词高大上,文学词汇而已,实际上就是 DP table,看一眼就明白了。
这 6 道题目是有共性的,我就抽出来第 4 道题目,因为这道题是一个最泛化的形式,其他的问题都是这个形式的简化,看下题目:
第一题是只进行一次交易,相当于 k = 1
;第二题是不限交易次数,相当于 k = +infinity
(正无穷);第三题是只进行 2 次交易,相当于 k = 2
;剩下两道也是不限次数,但是加了交易「冷冻期」和「手续费」的额外条件,其实就是第二题的变种,都很容易处理。
如果你还不熟悉题目,可以去 LeetCode 查看这些题目的内容,本文为了节省篇幅,就不列举这些题目的具体内容了。下面言归正传,开始解题。
首先,还是一样的思路:如何穷举?
动态规划核心套路 说过,动态规划算法本质上就是穷举「状态」,然后在「选择」中选择最优解。
那么对于这道题,我们具体到每一天,看看总共有几种可能的「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态。听起来抽象,你只要记住「状态」和「选择」两个词就行,下面实操一下就很容易明白了。
for 状态1 in 状态1的所有取值: for 状态2 in 状态2的所有取值: for ... dp[状态1][状态2][...] = 择优(选择1,选择2...)
比如说这个问题,每天都有三种「选择」:买入、卖出、无操作,我们用 buy
, sell
, rest
表示这三种选择。
但问题是,并不是每天都可以任意选择这三种选择的,因为 sell
必须在 buy
之后,buy
必须在 sell
之后。那么 rest
操作还应该分两种状态,一种是 buy
之后的 rest
(持有了股票),一种是 sell
之后的 rest
(没有持有股票)。而且别忘了,我们还有交易次数 k
的限制,就是说你 buy
还只能在 k > 0
的前提下操作。
很复杂对吧,不要怕,我们现在的目的只是穷举,你有再多的状态,老夫要做的就是一把梭全部列举出来。
这个问题的「状态」有三个,第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态(即之前说的 rest
的状态,我们不妨用 1 表示持有,0 表示没有持有)。然后我们用一个三维数组就可以装下这几种状态的全部组合:
dp[i][k][0 or 1] 0 <= i <= n - 1, 1 <= k <= K n 为天数,大 K 为交易数的上限,0 和 1 代表是否持有股票。 此问题共 n × K × 2 种状态,全部穷举就能搞定。 for 0 <= i < n: for 1 <= k <= K: for s in {0, 1}: dp[i][k][s] = max(buy, sell, rest)
而且我们可以用自然语言描述出每一个状态的含义,比如说 dp[3][2][1]
的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如 dp[2][3][0]
的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。很容易理解,对吧?
我们想求的最终答案是 dp[n - 1][K][0]
,即最后一天,最多允许 K
次交易,最多获得多少利润。
读者可能问为什么不是 dp[n - 1][K][1]
?因为 dp[n - 1][K][1]
代表到最后一天手上还持有股票,dp[n - 1][K][0]
表示最后一天手上的股票已经卖出去了,很显然后者得到的利润一定大于前者。
记住如何解释「状态」,一旦你觉得哪里不好理解,把它翻译成自然语言就容易理解了。
现在,我们完成了「状态」的穷举,我们开始思考每种「状态」有哪些「选择」,应该如何更新「状态」。
只看「持有状态」,可以画个状态转移图:
通过这个图可以很清楚地看到,每种状态(0 和 1)是如何转移而来的。根据这个图,我们来写一下状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]) max( 今天选择 rest, 今天选择 sell )
解释:今天我没有持有股票,有两种可能,我从这两种可能中求最大利润:
1、我昨天就没有持有,且截至昨天最大交易次数限制为 k
;然后我今天选择 rest
,所以我今天还是没有持有,最大交易次数限制依然为 k
。
2、我昨天持有股票,且截至昨天最大交易次数限制为 k
;但是今天我 sell
了,所以我今天没有持有股票了,最大交易次数限制依然为 k
。
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]) max( 今天选择 rest, 今天选择 buy )
解释:今天我持有着股票,最大交易次数限制为 k
,那么对于昨天来说,有两种可能,我从这两种可能中求最大利润:
1、我昨天就持有着股票,且截至昨天最大交易次数限制为 k
;然后今天选择 rest
,所以我今天还持有着股票,最大交易次数限制依然为 k
。
2、我昨天本没有持有,且截至昨天最大交易次数限制为 k - 1
;但今天我选择 buy
,所以今天我就持有股票了,最大交易次数限制为 k
。
这里着重提醒一下,时刻牢记「状态」的定义,
k
的定义并不是「已进行的交易次数」,而是「最大交易次数的上限限制」。如果确定今天进行一次交易,且要保证截至今天最大交易次数上限为k
,那么昨天的最大交易次数上限必须是k - 1
。
这个解释应该很清楚了,如果 buy
,就要从利润中减去 prices[i]
,如果 sell
,就要给利润增加 prices[i]
。今天的最大利润就是这两种可能选择中较大的那个。
注意 k
的限制,在选择 buy
的时候相当于开启了一次交易,那么对于昨天来说,交易次数的上限 k
应该减小 1。
修正:以前我以为在
sell
的时候给k
减小 1 和在buy
的时候给k
减小 1 是等效的,但细心的读者向我提出质疑,经过深入思考我发现前者确实是错误的,因为交易是从buy
开始,如果buy
的选择不改变交易次数k
的约束,会出现交易次数超出限制的的错误。
现在,我们已经完成了动态规划中最困难的一步:状态转移方程。如果之前的内容你都可以理解,那么你已经可以秒杀所有问题了,只要套这个框架就行了。不过还差最后一点点,就是定义 base case,即最简单的情况。
dp[-1][...][0] = 0 解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0。 dp[-1][...][1] = -infinity 解释:还没开始的时候,是不可能持有股票的。 因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。 dp[...][0][0] = 0 解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0。 dp[...][0][1] = -infinity 解释:不允许交易的情况下,是不可能持有股票的。 因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。
把上面的状态转移方程总结一下:
base case: dp[-1][...][0] = dp[...][0][0] = 0 dp[-1][...][1] = dp[...][0][1] = -infinity 状态转移方程: dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]) dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
读者可能会问,这个数组索引是 -1 怎么编程表示出来呢,负无穷怎么表示呢?这都是细节问题,有很多方法实现。现在完整的框架已经完成,下面开始具体化。
第一题,k = 1
直接套状态转移方程,根据 base case,可以做一些化简:
dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i]) dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i]) = max(dp[i-1][1][1], -prices[i]) 解释:k = 0 的 base case,所以 dp[i-1][0][0] = 0。 现在发现 k 都是 1,不会改变,即 k 对状态转移已经没有影响了。 可以进行进一步化简去掉所有 k: dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]) dp[i][1] = max(dp[i-1][1], -prices[i])
直接写出代码:
int n = prices.length; int[][] dp = new int[n][2]; for (int i = 0; i < n; i++) { dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]); dp[i][1] = Math.max(dp[i-1][1], -prices[i]); } return dp[n - 1][0];
显然 i = 0
时 i - 1
是不合法的索引,这是因为我们没有对 i
的 base case 进行处理,可以这样给一个特化处理:
if (i - 1 == -1) { dp[i][0] = 0; // 根据状态转移方程可得: // dp[i][0] // = max(dp[-1][0], dp[-1][1] + prices[i]) // = max(0, -infinity + prices[i]) = 0 dp[i][1] = -prices[i]; // 根据状态转移方程可得: // dp[i][1] // = max(dp[-1][1], dp[-1][0] - prices[i]) // = max(-infinity, 0 - prices[i]) // = -prices[i] continue; }
第一题就解决了,但是这样处理 base case 很麻烦,而且注意一下状态转移方程,新状态只和相邻的一个状态有关,其实不用整个 dp
数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):
// 原始版本 int maxProfit_k_1(int[] prices) { int n = prices.length; int[][] dp = new int[n][2]; for (int i = 0; i < n; i++) { if (i - 1 == -1) { // base case dp[i][0] = 0; dp[i][1] = -prices[i]; continue; } dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]); dp[i][1] = Math.max(dp[i-1][1], -prices[i]); } return dp[n - 1][0]; } // 空间复杂度优化版本 int maxProfit_k_1(int[] prices) { int n = prices.length; // base case: dp[-1][0] = 0, dp[-1][1] = -infinity int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE; for (int i = 0; i < n; i++) { // dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]) dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]); // dp[i][1] = max(dp[i-1][1], -prices[i]) dp_i_1 = Math.max(dp_i_1, -prices[i]); } return dp_i_0; }
两种方式都是一样的,不过这种编程方法简洁很多,但是如果没有前面状态转移方程的引导,是肯定看不懂的。后续的题目,你可以对比一下如何把 dp
数组的空间优化掉。
第二题,k = +infinity
如果 k
为正无穷,那么就可以认为 k
和 k - 1
是一样的。可以这样改写框架:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]) dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]) = max(dp[i-1][k][1], dp[i-1][k][0] - prices[i]) 我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了: dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]) dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
直接翻译成代码:
// 原始版本 int maxProfit_k_inf(int[] prices) { int n = prices.length; int[][] dp = new int[n][2]; for (int i = 0; i < n; i++) { if (i - 1 == -1) { // base case dp[i][0] = 0; dp[i][1] = -prices[i]; continue; } dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]); dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]); } return dp[n - 1][0]; } // 空间复杂度优化版本 int maxProfit_k_inf(int[] prices) { int n = prices.length; int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE; for (int i = 0; i < n; i++) { int temp = dp_i_0; dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]); dp_i_1 = Math.max(dp_i_1, temp - prices[i]); } return dp_i_0; }
第三题,k = +infinity with cooldown
每次 sell
之后要等一天才能继续交易。只要把这个特点融入上一题的状态转移方程即可:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]) dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i]) 解释:第 i 天选择 buy 的时候,要从 i-2 的状态转移,而不是 i-1 。
翻译成代码:
// 原始版本 int maxProfit_with_cool(int[] prices) { int n = prices.length; int[][] dp = new int[n][2]; for (int i = 0; i < n; i++) { if (i - 1 == -1) { // base case 1 dp[i][0] = 0; dp[i][1] = -prices[i]; continue; } if (i - 2 == -1) { // base case 2 dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]); // i - 2 小于 0 时根据状态转移方程推出对应 base case dp[i][1] = Math.max(dp[i-1][1], -prices[i]); // dp[i][1] // = max(dp[i-1][1], dp[-1][0] - prices[i]) // = max(dp[i-1][1], 0 - prices[i]) // = max(dp[i-1][1], -prices[i]) continue; } dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]); dp[i][1] = Math.max(dp[i-1][1], dp[i-2][0] - prices[i]); } return dp[n - 1][0]; } // 空间复杂度优化版本 int maxProfit_with_cool(int[] prices) { int n = prices.length; int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE; int dp_pre_0 = 0; // 代表 dp[i-2][0] for (int i = 0; i < n; i++) { int temp = dp_i_0; dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]); dp_i_1 = Math.max(dp_i_1, dp_pre_0 - prices[i]); dp_pre_0 = temp; } return dp_i_0; }
第四题,k = +infinity with fee
每次交易要支付手续费,只要把手续费从利润中减去即可。改写方程:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]) dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i] - fee) 解释:相当于买入股票的价格升高了。 在第一个式子里减也是一样的,相当于卖出股票的价格减小了。
如果直接把
fee
放在第一个式子里减,会有测试用例无法通过,错误原因是整型溢出而不是思路问题。一种解决方案是把代码中的int
类型都改成long
类型,避免int
的整型溢出。
直接翻译成代码,注意状态转移方程改变后 base case 也要做出对应改变:
// 原始版本 int maxProfit_with_fee(int[] prices, int fee) { int n = prices.length; int[][] dp = new int[n][2]; for (int i = 0; i < n; i++) { if (i - 1 == -1) { // base case dp[i][0] = 0; dp[i][1] = -prices[i] - fee; // dp[i][1] // = max(dp[i - 1][1], dp[i - 1][0] - prices[i] - fee) // = max(dp[-1][1], dp[-1][0] - prices[i] - fee) // = max(-inf, 0 - prices[i] - fee) // = -prices[i] - fee continue; } dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]); dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i] - fee); } return dp[n - 1][0]; } // 空间复杂度优化版本 int maxProfit_with_fee(int[] prices, int fee) { int n = prices.length; int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE; for (int i = 0; i < n; i++) { int temp = dp_i_0; dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]); dp_i_1 = Math.max(dp_i_1, temp - prices[i] - fee); } return dp_i_0; }
第五题,k = 2
k = 2
和前面题目的情况稍微不同,因为上面的情况都和 k
的关系不太大。要么 k
是正无穷,状态转移和 k
没关系了;要么 k = 1
,跟 k = 0
这个 base case 挨得近,最后也没有存在感。
这道题 k = 2
和后面要讲的 k
是任意正整数的情况中,对 k
的处理就凸显出来了。我们直接写代码,边写边分析原因。
原始的状态转移方程,没有可化简的地方 dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]) dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
按照之前的代码,我们可能想当然这样写代码(错误的):
int k = 2; int[][][] dp = new int[n][k + 1][2]; for (int i = 0; i < n; i++) { if (i - 1 == -1) { // 处理 base case dp[i][k][0] = 0; dp[i][k][1] = -prices[i]; continue; } dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]); dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]); } return dp[n - 1][k][0];
为什么错误?我这不是照着状态转移方程写的吗?
还记得前面总结的「穷举框架」吗?就是说我们必须穷举所有状态。其实我们之前的解法,都在穷举所有状态,只是之前的题目中 k
都被化简掉了。
比如说第一题,k = 1
时的代码框架:
int n = prices.length; int[][] dp = new int[n][2]; for (int i = 0; i < n; i++) { dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]); dp[i][1] = Math.max(dp[i-1][1], -prices[i]); } return dp[n - 1][0];
但当 k = 2
时,由于没有消掉 k
的影响,所以必须要对 k
进行穷举:
// 原始版本 int maxProfit_k_2(int[] prices) { int max_k = 2, n = prices.length; int[][][] dp = new int[n][max_k + 1][2]; for (int i = 0; i < n; i++) { for (int k = max_k; k >= 1; k--) { if (i - 1 == -1) { // 处理 base case dp[i][k][0] = 0; dp[i][k][1] = -prices[i]; continue; } dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]); dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]); } } // 穷举了 n × max_k × 2 个状态,正确。 return dp[n - 1][max_k][0]; }
PS:这里肯定会有读者疑惑,
k
的 base case 是 0,按理说应该从k = 1, k++
这样穷举状态k
才对?而且如果你真的这样从小到大遍历k
,提交发现也是可以的。
这个疑问很正确,因为我们前文 动态规划答疑篇 有介绍 dp
数组的遍历顺序是怎么确定的,主要是根据 base case,以 base case 为起点,逐步向结果靠近。
但为什么我从大到小遍历 k
也可以正确提交呢?因为你注意看,dp[i][k]
不会依赖 dp[i][k - 1]
,而是依赖 dp[i - 1][k - 1]
,对于 dp[i - 1][...]
,都是已经计算出来的。所以不管你是 k = max_k, k--
,还是 k = 1, k++
,都是可以得出正确答案的。
那为什么我使用 k = max_k, k--
的方式呢?因为这样符合语义。
你买股票,初始的「状态」是什么?应该是从第 0 天开始,而且还没有进行过买卖,所以最大交易次数限制 k
应该是 max_k
;而随着「状态」的推移,你会进行交易,那么交易次数上限 k
应该不断减少,这样一想,k = max_k, k--
的方式是比较合乎实际场景的。
当然,这里 k
取值范围比较小,所以可以不用 for 循环,直接把 k = 1 和 2 的情况全部列举出来也可以:
// 状态转移方程: // dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i]) // dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i]) // dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i]) // dp[i][1][1] = max(dp[i-1][1][1], -prices[i]) // 空间复杂度优化版本 int maxProfit_k_2(int[] prices) { // base case int dp_i10 = 0, dp_i11 = Integer.MIN_VALUE; int dp_i20 = 0, dp_i21 = Integer.MIN_VALUE; for (int price : prices) { dp_i20 = Math.max(dp_i20, dp_i21 + price); dp_i21 = Math.max(dp_i21, dp_i10 - price); dp_i10 = Math.max(dp_i10, dp_i11 + price); dp_i11 = Math.max(dp_i11, -price); } return dp_i20; }
有状态转移方程和含义明确的变量名指导,相信你很容易看懂。其实我们可以故弄玄虚,把上述四个变量换成 a, b, c, d
。这样当别人看到你的代码时就会大惊失色,对你肃然起敬。
第六题,k = any integer
有了上一题 k = 2
的铺垫,这题应该和上一题的第一个解法没啥区别。但是出现了一个超内存的错误,原来是传入的 k
值会非常大,dp
数组太大了。现在想想,交易次数 k
最多有多大呢?
一次交易由买入和卖出构成,至少需要两天。所以说有效的限制 k
应该不超过 n/2
,如果超过,就没有约束作用了,相当于 k = +infinity
。这种情况是之前解决过的。
直接把之前的代码重用:
int maxProfit_k_any(int max_k, int[] prices) { int n = prices.length; if (n <= 0) { return 0; } if (max_k > n / 2) { // 交易次数 k 没有限制的情况 return maxProfit_k_inf(prices); } // base case: // dp[-1][...][0] = dp[...][0][0] = 0 // dp[-1][...][1] = dp[...][0][1] = -infinity int[][][] dp = new int[n][max_k + 1][2]; // k = 0 时的 base case for (int i = 0; i < n; i++) { dp[i][0][1] = Integer.MIN_VALUE; dp[i][0][0] = 0; } for (int i = 0; i < n; i++) for (int k = max_k; k >= 1; k--) { if (i - 1 == -1) { // 处理 i = -1 时的 base case dp[i][k][0] = 0; dp[i][k][1] = -prices[i]; continue; } dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]); dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]); } return dp[n - 1][max_k][0]; }
至此,6 道题目通过一个状态转移方程全部解决。
四、最后总结
本文给大家讲了如何通过状态转移的方法解决复杂的问题,用一个状态转移方程秒杀了 6 道股票买卖问题,现在想想,其实也不算难对吧?这已经属于动态规划问题中较困难的了。
关键就在于列举出所有可能的「状态」,然后想想怎么穷举更新这些「状态」。一般用一个多维 dp
数组储存这些状态,从 base case 开始向后推进,推进到最后的状态,就是我们想要的答案。想想这个过程,你是不是有点理解「动态规划」这个名词的意义了呢?
具体到股票买卖问题,我们发现了三个状态,使用了一个三维数组,无非还是穷举 + 更新,不过我们可以说的高大上一点,这叫「三维 DP」,怕不怕?这个大实话一说,立刻显得你高人一等,名利双收有没有,所以给个在看/分享吧,鼓励一下我。
_____________