主要是关于矩阵的求导。
∂
y
∂
x
\frac{\partial y}{\partial \mathbf{x}}
∂x∂y [
y
y
y是标量,
x
\mathbf{x}
x是列向量,导数是行向量]
x
=
[
x
1
x
2
⋮
x
n
]
,
∂
y
∂
x
=
[
∂
y
∂
x
1
,
∂
y
∂
x
2
,
⋯
,
∂
y
∂
x
n
]
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \frac{\partial y}{\partial \mathbf{x}} = [\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, \cdots, \frac{\partial y}{\partial x_n}]
x=⎣⎢⎢⎢⎡x1x2⋮xn⎦⎥⎥⎥⎤,∂x∂y=[∂x1∂y,∂x2∂y,⋯,∂xn∂y]
例如:
∂
∂
x
x
1
2
+
2
x
2
2
=
[
2
x
1
,
4
x
2
]
\frac{\partial}{\partial \mathbf{x}}x_1^2 + 2x_2^2 = [2x_1, 4x_2 ]
∂x∂x12+2x22=[2x1,4x2]
一些样例
y y y | a a a | a u au au | sum ( x ) \text{sum}(x) sum(x) | ∥ x ∥ 2 \|\mathbf{x}\|^2 ∥x∥2 |
---|---|---|---|---|
∂ y ∂ x \frac{\partial y}{\partial \mathbf{x}} ∂x∂y | 0 T \mathbf{0}^T 0T | a ∂ u ∂ x a\frac{\partial u}{\partial \mathbf{x}} a∂x∂u | 1 T \mathbf{1}^T 1T | 2 x T 2\mathbf{x}^T 2xT |
y y y | u + v u+v u+v | u v uv uv | < u , v > <\mathbf{u}, \mathbf{v}> <u,v> |
---|---|---|---|
∂ y ∂ x \frac{\partial y}{\partial \mathbf{x}} ∂x∂y | ∂ u ∂ x + ∂ v ∂ x \frac{\partial u}{\partial \mathbf{x}} + \frac{\partial v}{\partial \mathbf{x}} ∂x∂u+∂x∂v | ∂ u ∂ x v + ∂ v ∂ x u \frac{\partial u}{\partial \mathbf{x}} v+ \frac{\partial v}{\partial \mathbf{x}} u ∂x∂uv+∂x∂vu | u T ∂ v ∂ x + v T ∂ u ∂ x \mathbf{u}^T \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}} uT∂x∂v+vT∂x∂u |
∂
y
∂
x
\frac{\partial \mathbf{y}}{\partial x}
∂x∂y [
y
\mathbf{y}
y是列向量,
x
x
x是标量,导数是列向量]
y
=
[
y
1
y
2
⋮
y
m
]
,
∂
y
∂
x
=
[
∂
y
1
x
∂
y
2
x
⋮
∂
y
m
x
]
\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \quad \frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{x} \\ \frac{\partial y_2}{x} \\ \vdots \\ \frac{\partial y_m}{x} \end{bmatrix}
y=⎣⎢⎢⎢⎡y1y2⋮ym⎦⎥⎥⎥⎤,∂x∂y=⎣⎢⎢⎢⎡x∂y1x∂y2⋮x∂ym⎦⎥⎥⎥⎤
∂
y
∂
x
\frac{\partial \mathbf{y}}{\partial \mathbf{x}}
∂x∂y [
y
\mathbf{y}
y是列向量,
x
\mathbf{x}
x是列向量,导数是矩阵]
x
=
[
x
1
x
2
⋮
x
n
]
,
y
=
[
y
1
y
2
⋮
y
m
]
,
∂
y
∂
x
=
[
∂
y
1
x
∂
y
2
x
⋮
∂
y
m
x
]
=
[
∂
y
1
∂
x
1
,
∂
y
1
∂
x
2
,
⋯
,
∂
y
1
∂
x
n
∂
y
2
∂
x
1
,
∂
y
2
∂
x
2
,
⋯
,
∂
y
2
∂
x
n
⋮
∂
y
m
∂
x
1
,
∂
y
m
∂
x
2
,
⋯
,
∂
y
m
∂
x
n
]
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\mathbf{x}} \\ \frac{\partial y_2}{\mathbf{x}} \\ \vdots \\ \frac{\partial y_m}{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1}, & \frac{\partial y_1}{\partial x_2}, & \cdots, & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1}, & \frac{\partial y_2}{\partial x_2}, & \cdots, & \frac{\partial y_2}{\partial x_n} \\ \vdots \\ \frac{\partial y_m}{\partial x_1}, & \frac{\partial y_m}{\partial x_2}, & \cdots, &\frac{\partial y_m}{\partial x_n} \\ \end{bmatrix}
x=⎣⎢⎢⎢⎡x1x2⋮xn⎦⎥⎥⎥⎤,y=⎣⎢⎢⎢⎡y1y2⋮ym⎦⎥⎥⎥⎤,∂x∂y=⎣⎢⎢⎢⎡x∂y1x∂y2⋮x∂ym⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎡∂x1∂y1,∂x1∂y2,⋮∂x1∂ym,∂x2∂y1,∂x2∂y2,∂x2∂ym,⋯,⋯,⋯,∂xn∂y1∂xn∂y2∂xn∂ym⎦⎥⎥⎥⎥⎤
一些样例
y \mathbf{y} y | a \mathbf{a} a | x \mathbf{x} x | A x \mathbf{Ax} Ax | x T A \mathbf{x^TA} xTA |
---|---|---|---|---|
∂ y ∂ x \frac{\partial \mathbf{y}}{\partial \mathbf{x}} ∂x∂y | 0 \mathbf{0} 0 | I \mathbf{I} I | A \mathbf{A} A | A T \mathbf{A}^T AT |
y \mathbf{y} y | a u a\mathbf{u} au | A u \mathbf{Au} Au | u + v \mathbf{u}+ \mathbf{v} u+v |
---|---|---|---|
∂ y ∂ x \frac{\partial \mathbf{y}}{\partial \mathbf{x}} ∂x∂y | a ∂ u ∂ x a\frac{\partial \mathbf{u}}{\partial \mathbf{x}} a∂x∂u | A ∂ u ∂ x \mathbf{A}\frac{\partial \mathbf{u}}{\partial \mathbf{x}} A∂x∂u | ∂ u ∂ x + ∂ v ∂ x \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} ∂x∂u+∂x∂v |