线性查找是一种非常简单的查找方式。查找思路是:从数组的一个元素出发,一个个地和要查找的值进行比较,如果发现有相同的元素就返回该元素的下标。反之返回-1(未找到)
package com.atguigu.search; public class SeqSearch { public static void main(String[] args) { int arr[] = { 1, 9, 11, -1, 34, 89 };// 没有顺序的数组 int index = seqSearch(arr, -11); if(index == -1) { System.out.println("没有找到到"); } else { System.out.println("找到,下标为=" + index); } } /** * 这里我们实现的线性查找是找到一个满足条件的值,就返回 * @param arr * @param value * @return */ public static int seqSearch(int[] arr, int value) { // 线性查找是逐一比对,发现有相同值,就返回下标 for (int i = 0; i < arr.length; i++) { if(arr[i] == value) { return i; } } return -1; } }
进行二分查找的数组必须为有序数组
设置一个指向中间元素下标的变量mid,mid=(left + right)/2
让要查找的元素和数组mid下标的元素进行比较
如果查找的元素大于arr[mid],则left变为mid后面一个元素的下标
如果查找的元素小于arr[mid],则right变为mid前一个元素的下标
如果查找的元素等于arr[mid],则mid就是要查找元素所在的位置 当left > rigth时,说明元素不在该数组中
package com.atguigu.search; import java.util.ArrayList; import java.util.List; //注意:使用二分查找的前提是 该数组是有序的. public class BinarySearch { public static void main(String[] args) { //int arr[] = { 1, 8, 10, 89,1000,1000, 1234 }; int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , 11, 12, 13,14,15,16,17,18,19,20 }; // // int resIndex = binarySearch(arr, 0, arr.length - 1, 1000); // System.out.println("resIndex=" + resIndex); List<Integer> resIndexList = binarySearch2(arr, 0, arr.length - 1, 1); System.out.println("resIndexList=" + resIndexList); } // 二分查找算法 /** * * @param arr * 数组 * @param left * 左边的索引 * @param right * 右边的索引 * @param findVal * 要查找的值 * @return 如果找到就返回下标,如果没有找到,就返回 -1 */ public static int binarySearch(int[] arr, int left, int right, int findVal) { // 当 left > right 时,说明递归整个数组,但是没有找到 if (left > right) { return -1; } int mid = (left + right) / 2; int midVal = arr[mid]; if (findVal > midVal) { // 向 右递归 return binarySearch(arr, mid + 1, right, findVal); } else if (findVal < midVal) { // 向左递归 return binarySearch(arr, left, mid - 1, findVal); } else { return mid; } } //完成一个课后思考题: /* * 课后思考题: {1,8, 10, 89, 1000, 1000,1234} 当一个有序数组中, * 有多个相同的数值时,如何将所有的数值都查找到,比如这里的 1000 * * 思路分析 * 1. 在找到mid 索引值,不要马上返回 * 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList * 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList * 4. 将Arraylist返回 */ public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) { System.out.println("hello~"); // 当 left > right 时,说明递归整个数组,但是没有找到 if (left > right) { return new ArrayList<Integer>(); } int mid = (left + right) / 2; int midVal = arr[mid]; if (findVal > midVal) { // 向 右递归 return binarySearch2(arr, mid + 1, right, findVal); } else if (findVal < midVal) { // 向左递归 return binarySearch2(arr, left, mid - 1, findVal); } else { // * 思路分析 // * 1. 在找到mid 索引值,不要马上返回 // * 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList // * 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList // * 4. 将Arraylist返回 List<Integer> resIndexlist = new ArrayList<Integer>(); //向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList int temp = mid - 1; while(true) { if (temp < 0 || arr[temp] != findVal) {//退出 break; } //否则,就temp 放入到 resIndexlist resIndexlist.add(temp); temp -= 1; //temp左移 } resIndexlist.add(mid); // //向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList temp = mid + 1; while(true) { if (temp > arr.length - 1 || arr[temp] != findVal) {//退出 break; } //否则,就temp 放入到 resIndexlist resIndexlist.add(temp); temp += 1; //temp右移 } return resIndexlist; } } }
但是有可能要查找的元素有多个。这时就需要在找到一个元素后,不要立即返回,而是扫描其左边和右边的元素,将所有相同元素的下标保存到一个数组中,然后一起返回
在二分查找中,如果我们 要找的元素位于数组的最前端或者最后段,这时的查找效率是很低的。所以在二分查找至上,引入了插值查找,也是一种基于有序数组的查找方式
插值查找与二分查找的区别是:插值查找使用了一种自适应算法,用这种算法来计算mid。
package com.atguigu.search; import java.util.Arrays; public class InsertValueSearch { public static void main(String[] args) { // int [] arr = new int[100]; // for(int i = 0; i < 100; i++) { // arr[i] = i + 1; // } int arr[] = { 1, 8, 10, 89,1000,1000, 1234 }; int index = insertValueSearch(arr, 0, arr.length - 1, 1234); //int index = binarySearch(arr, 0, arr.length, 1); System.out.println("index = " + index); //System.out.println(Arrays.toString(arr)); } public static int binarySearch(int[] arr, int left, int right, int findVal) { System.out.println("二分查找被调用~"); // 当 left > right 时,说明递归整个数组,但是没有找到 if (left > right) { return -1; } int mid = (left + right) / 2; int midVal = arr[mid]; if (findVal > midVal) { // 向 右递归 return binarySearch(arr, mid + 1, right, findVal); } else if (findVal < midVal) { // 向左递归 return binarySearch(arr, left, mid - 1, findVal); } else { return mid; } } //编写插值查找算法 //说明:插值查找算法,也要求数组是有序的 /** * * @param arr 数组 * @param left 左边索引 * @param right 右边索引 * @param findVal 查找值 * @return 如果找到,就返回对应的下标,如果没有找到,返回-1 */ public static int insertValueSearch(int[] arr, int left, int right, int findVal) { System.out.println("插值查找次数~~"); //注意:findVal < arr[0] 和 findVal > arr[arr.length - 1] 必须需要 //否则我们得到的 mid 可能越界 if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) { return -1; } // 求出mid, 自适应 int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]); int midVal = arr[mid]; if (findVal > midVal) { // 说明应该向右边递归 return insertValueSearch(arr, mid + 1, right, findVal); } else if (findVal < midVal) { // 说明向左递归查找 return insertValueSearch(arr, left, mid - 1, findVal); } else { return mid; } } }
package com.atguigu.search; import java.util.Arrays; public class FibonacciSearch { public static int maxSize = 20; public static void main(String[] args) { int [] arr = {1,8, 10, 89, 1000, 1234}; System.out.println("index=" + fibSearch(arr, 189));// 0 } //因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列 //非递归方法得到一个斐波那契数列 public static int[] fib() { int[] f = new int[maxSize]; f[0] = 1; f[1] = 1; for (int i = 2; i < maxSize; i++) { f[i] = f[i - 1] + f[i - 2]; } return f; } //编写斐波那契查找算法 //使用非递归的方式编写算法 /** * * @param a 数组 * @param key 我们需要查找的关键码(值) * @return 返回对应的下标,如果没有-1 */ public static int fibSearch(int[] a, int key) { int low = 0; int high = a.length - 1; int k = 0; //表示斐波那契分割数值的下标 int mid = 0; //存放mid值 int f[] = fib(); //获取到斐波那契数列 //获取到斐波那契分割数值的下标 while(high > f[k] - 1) { k++; } //因为 f[k] 值 可能大于 a 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[] //不足的部分会使用0填充 int[] temp = Arrays.copyOf(a, f[k]); //实际上需求使用a数组最后的数填充 temp //举例: //temp = {1,8, 10, 89, 1000, 1234, 0, 0} => {1,8, 10, 89, 1000, 1234, 1234, 1234,} for(int i = high + 1; i < temp.length; i++) { temp[i] = a[high]; } // 使用while来循环处理,找到我们的数 key while (low <= high) { // 只要这个条件满足,就可以找 mid = low + f[k - 1] - 1; if(key < temp[mid]) { //我们应该继续向数组的前面查找(左边) high = mid - 1; //为甚是 k-- //说明 //1. 全部元素 = 前面的元素 + 后边元素 //2. f[k] = f[k-1] + f[k-2] //因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3] //即 在 f[k-1] 的前面继续查找 k-- //即下次循环 mid = f[k-1-1]-1 k--; } else if ( key > temp[mid]) { // 我们应该继续向数组的后面查找(右边) low = mid + 1; //为什么是k -=2 //说明 //1. 全部元素 = 前面的元素 + 后边元素 //2. f[k] = f[k-1] + f[k-2] //3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4] //4. 即在f[k-2] 的前面进行查找 k -=2 //5. 即下次循环 mid = f[k - 1 - 2] - 1 k -= 2; } else { //找到 //需要确定,返回的是哪个下标 if(mid <= high) { return mid; } else { return high; } } } return -1; } }