Redis教程

Redis去重方法

本文主要是介绍Redis去重方法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

目录
  • 1.基于 set
  • 2.基于 bit
  • 3.基于 HyperLogLog
  • 4. 基于bloomfilter

这篇文章主要介绍了Redis实现唯一计数的3种方法分享,本文讲解了基于SET、基于 bit、基于 HyperLogLog三种方法,需要的朋友可以参考下

唯一计数是网站系统中十分常见的一个功能特性,例如网站需要统计每天访问的人数 unique visitor (也就是 UV)。计数问题很常见,但解决起来可能十分复杂:一是需要计数的量可能很大,比如大型的站点每天有数百万的人访问,数据量相当大;二是通常还希望扩展计数的维度,比如除了需要每天的 UV,还想知道每周或每月的 UV,这样导致计算十分复杂。

在关系数据库存储的系统里,实现唯一计数的方法就是 select count(distinct <item_id>),它十分简单,但是如果数据量很大,这个语句执行是很慢的。用关系数据库另外一个问题是插入数据性能也不高。

Redis 解决这类计数问题得心应手,相比关系数据库速度更快,消耗资源更少,甚至提供了 3 种不同的方法。

1.基于 set

Redis 的 set 用于保存唯一的数据集合,通过它可以快速判断某一个元素是否存在于集合中,也可以快速计算某一个集合的元素个数,另外和可以合并集合到一个新的集合中。涉及的命令如下:

复制代码 代码如下:

SISMEMBER key member  # 判断 member 是否存在
SADD key member  # 往集合中加入 member
SCARD key   # 获取集合元素个数 

基于 set 的方法简单有效,计数精确,适用面广,易于理解,它的缺点是消耗资源比较大(当然比起关系数据库是少很多的),如果元素个数很大(比如上亿的计数),消耗内存很恐怖。

2.基于 bit

Redis 的 bit 可以用于实现比 set 内存高度压缩的计数,它通过一个 bit 1 或 0 来存储某个元素是否存在信息。例如网站唯一访客计数,可以把 user_id 作为 bit 的偏移量 offset,设置为 1 表示有访问,使用 1 MB的空间就可以存放 800 多万用户的一天访问计数情况。涉及的命令如下:
复制代码 代码如下:

SETBIT key offset value  # 设置位信息
GETBIT key offset        # 获取位信息
BITCOUNT key [start end] # 计数
BITOP operation destkey key [key ...]  # 位图合并 

基于 bit 的方法比起 set 空间消耗小得多,但是它要求元素能否简单映射为位偏移,适用面窄了不少,另外它消耗的空间取决于最大偏移量,和计数值无关,如果最大偏移量很大,消耗内存也相当可观。

3.基于 HyperLogLog

实现超大数据量精确的唯一计数都是比较困难的,但是如果只是近似的话,计算科学里有很多高效的算法,其中 HyperLogLog Counting 就是其中非常著名的算法,它可以仅仅使用 12 k左右的内存,实现上亿的唯一计数,而且误差控制在百分之一左右。涉及的命令如下:
复制代码 代码如下:

PFADD key element [element ...]  # 加入元素
PFCOUNT key [key ...]   # 计数
这种计数方法真的很神奇,我也没有彻底弄明白,有兴趣可以深入研究相关文章。

redis 提供的这三种唯一计数方式各有优劣,可以充分满足不同情况下的计数要求。

4. 基于bloomfilter

BloomFilter是利用类似位图或者位集合数据结构来存储数据,利用位数组来简洁的表示一个集合,并且能够快速的判断一个元素是不是已经存在于这个集合。虽然BloomFilter不是100%准确,但是可以通过调节参数,使用Hash函数的个数,位数组的大小来降低失误率。这样调节完全可以把失误率降低到接近于0。可以满足大部分场景了。

redis使用布隆过滤器需要安装插件:centos中安装redis插件bloom-filter

这篇关于Redis去重方法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!