Python教程

对图片中的表格进行识别,并转换成excel文件(python、小软件)(批量)

本文主要是介绍对图片中的表格进行识别,并转换成excel文件(python、小软件)(批量),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

文章目录

  • 一、python 调用腾讯接口
  • 二、python+百度API识别图片中表格并保存到excel
  • 三、小马识图识别工具

一、python 调用腾讯接口

识别效果就比较拉胯,这个SecretId 和 SecretKey 需要你自己去申请,不难,去腾讯云捣鼓吧。

https://www.cnblogs.com/littlefatsheep/p/11024505.html

import numpy as np
import pandas as pd
import os
import json
import re
import base64
import xlwings as xw
##导入腾讯AI api
from tencentcloud.common import credential
from tencentcloud.common.profile.client_profile import ClientProfile
from tencentcloud.common.profile.http_profile import HttpProfile
from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException
from tencentcloud.ocr.v20181119 import ocr_client, models
 
#定义函数
def excelFromPictures(picture,SecretId,SecretKey):
    try:
        with open(picture,"rb") as f:
                img_data = f.read()
        img_base64 = base64.b64encode(img_data)
        cred = credential.Credential(SecretId, SecretKey)  #ID和Secret从腾讯云申请
        httpProfile = HttpProfile()
        httpProfile.endpoint = "ocr.tencentcloudapi.com"
     
        clientProfile = ClientProfile()
        clientProfile.httpProfile = httpProfile
        client = ocr_client.OcrClient(cred, "ap-shanghai", clientProfile)
     
        req = models.TableOCRRequest()
        params = '{"ImageBase64":"' + str(img_base64, 'utf-8') + '"}'
        req.from_json_string(params)
        resp = client.TableOCR(req)
        #     print(resp.to_json_string())
    except TencentCloudSDKException as err:
        print(err)
    ##提取识别出的数据,并且生成json
    result1 = json.loads(resp.to_json_string())
    rowIndex = []
    colIndex = []
    content = []
    for item in result1['TextDetections']:
        rowIndex.append(item['RowTl'])
        colIndex.append(item['ColTl'])
        content.append(item['Text'])
    ##导出Excel
    ##ExcelWriter方案
    rowIndex = pd.Series(rowIndex)
    colIndex = pd.Series(colIndex)
    index = rowIndex.unique()
    index.sort()
    columns = colIndex.unique()
    columns.sort()
    data = pd.DataFrame(index = index, columns = columns)
    for i in range(len(rowIndex)):
        data.loc[rowIndex[i],colIndex[i]] = re.sub(" ","",content[i])
    writer = pd.ExcelWriter("../tables/" + re.match(".*\.",f.name).group() + "xlsx", engine='xlsxwriter')
    data.to_excel(writer,sheet_name = 'Sheet1', index=False,header = False)
    writer.save()


# 获取文件夹中的图片名
path = 'C:\\Users\\ABC\\Desktop\\tables'#指定文件所在路径
filetype ='.jpg'#指定文件类型
def get_filename(path,filetype):
    name =[]
    final_name = []
    for root,dirs,files in os.walk(path):
        for i in files:
            if filetype in i:
                name.append(i.replace(filetype,''))
    final_name = [item + filetype for item in name]
    return final_name

pictures = get_filename(path,filetype)
SecretId = 'xxxxxxxxxxx'
SecretKey = 'xxxxxxxxxxx'
for pic in pictures:
    excelFromPictures(pic,SecretId,SecretKey)
    print("已经完成" + pic + "的提取.")

二、python+百度API识别图片中表格并保存到excel

调用百度的表格识别接口,效果就还真不错,虽然有一些小错误,但整体是可以的,只要图片中的表格标准,就基本都能精准识别出来。

同样的,需要去百度申请 APP_ID=‘xxxx’ 、API_KEY=‘xxxx’、 SECRET_KEY=‘xxxxx’

python+百度API识别图片中表格并保存到excel

import pandas as pd
import numpy as np
import re
# 图片识别
from aip import AipOcr
# 时间模块
import time
# 网页获取
import requests 
# 操作系统接口模块
import os
image_path=''
# 获取文件夹中所有图片
 
def get_image():
    images=[] # 存储文件夹内所有文件的路径(包括子目录内的文件)
    for root, dirs, files in os.walk(image_path):
        path = [os.path.join(root, name) for name in files]
        images.extend(path)
    return images
 
def Image_Excel(APP_ID,API_KEY,SECRET_KEY):
   #  调用百度AI接口
    client = AipOcr(APP_ID, API_KEY, SECRET_KEY)
    # 循环遍历文件家中图片
    images=get_image()
    for image in images:
    	# 以二进制方式打开图片
        img_open=open(image,'rb')
        # 读取图片
        img_read = img_open.read()
        # 调用表格识别模块识别图片
        table = client.tableRecognitionAsync(img_read)
        # 获取请求ID
        request_id = table['result'][0]['request_id']
        #获取表格处理结果
        result = client.getTableRecognitionResult(request_id)
         # 处理状态是“已完成”,获取下载地址
        while result['result']['ret_msg'] != '已完成':
            time.sleep(2)  # 暂停2秒再刷新
            result = client.getTableRecognitionResult(request_id)
        download_url = result['result']['result_data']
        print(download_url)
        # 获取表格数据
        excel_data = requests.get(download_url)
         # 根据图片名字命名表格名称
        xlsx_name = image.split(".")[0] + ".xls"
        # 新建excel文件
        xlsx = open(xlsx_name, 'wb')
        # 将数据写入excel文件并保存
        xlsx.write(excel_data.content)
 
if __name__=='__main__':
    image_path ='C:\\Users\\ABC\\Desktop\\市场行情截图\\市场行情截图\\'
    APP_ID='xxxx'
    API_KEY='xxxx'
    SECRET_KEY='xxxxx'
    Image_Excel(APP_ID,API_KEY,SECRET_KEY)

配合python,对识别的结果在处理一遍

比如我这里,是针对我的图片识别结果,对一些错误进行处理

# --------------------------------------------------------------------2021年
path = 'C:\\Users\\ABC\\Desktop\\截图\\截图\\2021\\'#指定文件所在路径
filetype ='.xls'#指定文件类型
def get_filename(path,filetype):
    name =[]
    final_name = []
    for root,dirs,files in os.walk(path):
        for i in files:
            if filetype in i:
                name.append(i.replace(filetype,''))
    final_name = [item +'.xls' for item in name]
    return final_name

lli = get_filename(path,filetype)


writer = pd.ExcelWriter('result.xlsx')
for k in lli:
    print('开始',k)
    df = pd.read_excel(path+k)
    # 删除最后行(最后一行数据不完整)
    df.drop([df.shape[0]-1],inplace=True)
    
    # 把
    if df.iloc[0,3]=='':
        df.drop([0,1],inplace=True)
        df.index = range(df.shape[0]) 
    
    df_yao = df.iloc[4:9,:]
    
    # 删除最后的空列
    for i in df_yao.columns[::-1]:
        if df_yao[i].isnull().sum()==df_yao.shape[0]:
            df_yao.drop([df_yao.columns[-1]],axis=1,inplace=True)
        else:
            break
        
    # 定义列名
    if df_yao.iloc[0,0]=='银票':
        df_yao.columns = ['票据类型','票据介质','期限品种','最新利率','加权平均利率','最高利率','最低利率','开盘利率','收盘利率','前收盘利率','前加权平均利率','成交量']
    if df_yao.iloc[0,0]=='电票':
        df_yao.columns = ['票据介质','期限品种','最新利率','加权平均利率','最高利率','最低利率','开盘利率','收盘利率','前收盘利率','前加权平均利率','成交量']
    
    
    # 处理 票据类型  错误(只处理银票、电票)
    if '票据类型' in df_yao.columns:
        if '银票电票' in df_yao['票据类型'].unique().tolist():
            df_yao['票据介质'][df_yao['票据类型']=='银票电票'] = '电票'
            df_yao['票据类型'][df_yao['票据类型']=='银票电票'] = '银票'
    
    # 处理 票据介质 错误    
    df_yao['期限品种'][~df_yao['票据介质'].isin(['纸票','电票'])]=df_yao[~df_yao['票据介质'].isin(['纸票','电票'])]['票据介质'].apply(lambda x:re.sub('[\u4e00-\u9fa5]', '', x))
    df_yao['票据介质'][~df_yao['票据介质'].isin(['纸票','电票'])]=df_yao[~df_yao['票据介质'].isin(['纸票','电票'])]['票据介质'].str.slice(0, 2)
    
    if len(df_yao['票据介质'].unique().tolist())==1:
        df_yao.to_excel(excel_writer=writer,sheet_name=k.replace('.xls',''),index=False)
    print('完成',k)
writer.save()
writer.close()

三、小马识图识别工具

在网上找一个小软件,可以批量的识别图片中的表格,并转换为想要的格式,但是效率不高,我试过100张图片,大概需要15分钟。其识别效果还行,但还是有一些会是错,比如表头容易混在一起,我看了一下,其实现猜测也是调用的百度接口。

下载地址:
https://www.onlinedown.net/soft/1229664.htm

识别出来以后,可以再用Python进行处理
在这里插入图片描述
在这里插入图片描述

这篇关于对图片中的表格进行识别,并转换成excel文件(python、小软件)(批量)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!