Java教程

java基础:NIO之Buffer(2)

本文主要是介绍java基础:NIO之Buffer(2),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

Buffer简介

Java NIO 中的 Buffer 用于和 NIO 通道进行交互。数据是从通道读入缓冲区,从缓冲区写入到通道中的。

image-20211102153201444

缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存。这块内存被包装成 NIO Buffer 对象,并提供了一组方法,用来方便的访问该块内存。缓冲区实际上是一个容器对象,更直接的说,其实就是一个数组,在 NIO 库中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的; 在写入数据时,它也是写入到缓冲区中的;任何时候访问 NIO 中的数据,都是将它放到缓冲区中。而在面向流 I/O系统中,所有数据都是直接写入或者直接将数据读取到 Stream 对象中。

在 NIO 中,所有的缓冲区类型都继承于抽象类Buffer,最常用的就是 ByteBuffer,对于 Java 中的基本类型,基本都有一个具体 Buffer 类型与之相对应,它们之间的继承关系如下图所示:

image-20211102154147968

Buffer 的基本用法

1、使用 Buffer 读写数据,一般遵循以下四个步骤:

(1)写入数据到 Buffer

(2)调用 flip()方法

(3)从 Buffer 中读取数据

(4)调用 clear()方法或者 compact()方法

当向 buffer 写入数据时,buffer 会记录下写了多少数据。一旦要读取数据,需要通过 flip()方法将 Buffer 从写模式切换到读模式。在读模式下,可以读取之前写入到 buffer 的所有数据。一旦读完了所有的数据,就需要清空缓冲区,让它可以再次被写入。有两种方式能清空缓冲区:调用 clear()或 compact()方法。clear()方法会清空整个缓冲区。compact()方法只会清除已经读过的数据。任何未读的数据都被移到缓冲区的起始处,新写入的数据将放到缓冲区未读数据的后面。

IntBuffer示例:

        // 分配新的 int 缓冲区,参数为缓冲区容量
        // 新缓冲区的当前位置将为零,其界限(限制位置)将为其容量。
        // 它将具有一个底层实现数组,其数组偏移量将为零。
        IntBuffer buffer = IntBuffer.allocate(8);

        for (int i = 0; i < buffer.capacity(); ++i) {
            int j = 2 * (i + 1);
            // 将给定整数写入此缓冲区的当前位置,当前位置递增
            buffer.put(j);
        }

        // 重设此缓冲区,将限制设置为当前位置,然后将当前位置设置为 0
        buffer.flip();

        // 查看在当前位置和限制位置之间是否有元素
        while (buffer.hasRemaining()) {
            // 读取此缓冲区当前位置的整数,然后当前位置递增
            int j = buffer.get();
            System.out.print(j + " ");
        }

image-20211102155848991

Buffer 的 capacity、position 和 limit

为了理解 Buffer 的工作原理,需要熟悉它的三个属性:

  • capacity
  • position
  • limit

position 和 limit 的含义取决于 Buffer 处在读模式还是写模式。不管 Buffer 处在什么模式,capacity 的含义总是一样的。

这里有一个关于 capacity,position 和 limit 在读写模式中的说明:

image-20211102160108393

(1)capacity

作为一个内存块,Buffer 有一个固定的大小值,也叫“capacity”.你只能往里写capacity 个 byte、long,char 等类型。一旦 Buffer 满了,需要将其清空(通过读数据或者清除数据)才能继续写数据往里写数据。

(2)position

1)写数据到 Buffer 中时,position 表示写入数据的当前位置,position 的初始值为 0。当一个 byte、long 等数据写到 Buffer 后, position 会向下移动到下一个可插入 数据的 Buffer 单元。position 最大可为 capacity – 1(因为 position 的初始值为 0).

2)读数据到 Buffer 中时,position 表示读入数据的当前位置,如 position=2 时表 示已开始读入了 3 个 byte,或从第 3 个 byte 开始读取。通过 ByteBuffer.flip()切换 到读模式时 position 会被重置为 0,当 Buffer 从 position 读入数据后,position 会 下移到下一个可读入的数据 Buffer 单元。

(3)limit

1)写数据时,limit 表示可对 Buffer 最多写入多少个数据。写模式下,limit 等于 Buffer 的 capacity。

2)读数据时,limit 表示 Buffer 里有多少可读数据(not null 的数据),因此能读到之前写入的所有数据(limit 被设置成已写数据的数量,这个值在写模式下就是 position)。

rewind、clear、clear、clear、reset

rewind()方法:

Buffer.rewind()将 position 设回 0,所以你可以重读 Buffer 中的所有数据。limit 保 持不变,仍然表示能从 Buffer 中读取多少个元素(byte、char 等)。

clear()与 compact()方法:

一旦读完 Buffer 中的数据,需要让 Buffer 准备好再次被写入。可以通过 clear()或compact()方法来完成。

如果调用的是 clear()方法,position 将被设回 0,limit 被设置成 capacity 的值。换句话说,Buffer 被清空了。Buffer 中的数据并未清除,只是这些标记告诉我们可以从哪里开始往 Buffer 里写数据。

如果 Buffer 中有一些未读的数据,调用 clear()方法,数据将“被遗忘”,意味着不再有任何标记会告诉你哪些数据被读过,哪些还没有。

如果 Buffer 中仍有未读的数据,且后续还需要这些数据,但是此时想要先先写些数据,那么使用 compact()方法。

compact()方法将所有未读的数据拷贝到 Buffer 起始处。然后将 position 设到最后一个未读元素正后面。limit 属性依然像 clear()方法一样,设置成 capacity。现在 Buffer 准备好写数据了,但是不会覆盖未读的数据。

mark()与 reset()方法:

通过调用 Buffer.mark()方法,可以标记 Buffer 中的一个特定 position。之后可以通过调用 Buffer.reset()方法恢复到这个 position。例如:

缓冲区操作

缓冲区分片

在 NIO 中,除了可以分配或者包装一个缓冲区对象外,还可以根据现有的缓冲区对象来创建一个子缓冲区,即在现有缓冲区上切出一片来作为一个新的缓冲区,但现有的缓冲区与创建的子缓冲区在底层数组层面上是数据共享的,也就是说,子缓冲区相当于是现有缓冲区的一个视图窗口。调用 slice()方法可以创建一个子缓冲区。

示例:

        ByteBuffer buffer = ByteBuffer.allocate(10);
        // 缓冲区中的数据 0-9
        for (int i = 0; i < buffer.capacity(); ++i) {
            buffer.put((byte) i);
        }
        // 创建子缓冲区
        buffer.position(3);
        buffer.limit(7);
        ByteBuffer slice = buffer.slice();

        // 改变子缓冲区的内容
        for (int i = 0; i < slice.capacity(); ++i) {
            byte b = slice.get(i);
            b *= 10;
            slice.put(i, b);
        }
        buffer.position(0);
        buffer.limit(buffer.capacity());
        while (buffer.remaining() > 0) {
            System.out.println(buffer.get());
        }

结果:

image-20211102172326855

只读缓冲区

只读缓冲区非常简单,可以读取它们,但是不能向它们写入数据。可以通过调用缓冲区的 asReadOnlyBuffer()方法,将任何常规缓冲区转换为只读缓冲区,这个方法返回一个与原缓冲区完全相同的缓冲区,并与原缓冲区共享数据,只不过它是只读的。 如果原缓冲区的内容发生了变化,只读缓冲区的内容也随之发生变化:

        ByteBuffer buffer = ByteBuffer.allocate(10);
        // 缓冲区中的数据 0-9
        for (int i = 0; i < buffer.capacity(); ++i) {
            buffer.put((byte) i);
        }
        // 创建只读缓冲区
        ByteBuffer readonly = buffer.asReadOnlyBuffer();
        // 改变原缓冲区的内容
        for (int i = 0; i < buffer.capacity(); ++i) {
            byte b = buffer.get(i);
            b *= 10;
            buffer.put(i, b);
        }
        readonly.position(0);
        readonly.limit(buffer.capacity());
        // 只读缓冲区的内容也随之改变
        while (readonly.remaining() > 0) {
            System.out.println(readonly.get());
        }

结果:

image-20211102173006715

如果尝试修改只读缓冲区的内容,则会报 ReadOnlyBufferException 异常。只读缓冲区对于保护数据很有用。在将缓冲区传递给某个对象的方法时,无法知道这个方法是否会修改缓冲区中的数据。创建一个只读的缓冲区可以保证该缓冲区不会被修改。只可以把常规缓冲区转换为只读缓冲区,而不能将只读的缓冲区转换为可写的缓冲区。

直接缓冲区

直接缓冲区是为加快 I/O 速度,使用一种特殊方式为其分配内存的缓冲区,JDK 文档中的描述为:给定一个直接字节缓冲区,Java 虚拟机将尽最大努力直接对它执行本机 I/O 操作。也就是说,它会在每一次调用底层操作系统的本机 I/O 操作之前(或之后), 尝试避免将缓冲区的内容拷贝到一个中间缓冲区中或者从一个中间缓冲区中拷贝数据。要分配直接缓冲区,需要调用 allocateDirect()方法,而不是 allocate()方法,使用方式与普通缓冲区并无区别。

拷贝文件示例:

        String infile = "1.txt";
        FileInputStream fin = new FileInputStream(infile);
        FileChannel fcin = fin.getChannel();
        String outfile = "2.txt";
        FileOutputStream fout = new FileOutputStream(outfile);
        FileChannel fcout = fout.getChannel();
        // 使用 allocateDirect,而不是 allocate
        ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
        while (true) {
            buffer.clear();
            int r = fcin.read(buffer);
            if (r == -1) {
                break;
            }
            buffer.flip();
            fcout.write(buffer);
        }

内存映射文件 I/O

内存映射文件 I/O 是一种读和写文件数据的方法,它可以比常规的基于流或者基于通道的 I/O 快的多。内存映射文件 I/O 是通过使文件中的数据出现为内存数组的内容来完成的,这其初听起来似乎不过就是将整个文件读到内存中,但是事实上并不是这样。一般来说,只有文件中实际读取或者写入的部分才会映射到内存中。

示例:

        RandomAccessFile raf = new RandomAccessFile("1.txt", "rw");
        FileChannel fc = raf.getChannel();
        MappedByteBuffer mbb = fc.map(FileChannel.MapMode.READ_WRITE, 0, 2);
        mbb.put(0, (byte) 97);
        mbb.put(1, (byte) 122);
        raf.close();

image-20211102174424838

这篇关于java基础:NIO之Buffer(2)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!