前言
阿里的双11销量大屏可以说是一道特殊的风景线。实时大屏(real-time dashboard)正在被越来越多的企业采用,用来及时呈现关键的数据指标。并且在实际操作中,肯定也不会仅仅计算一两个维度。由于Flink的“真·流式计算”这一特点,它比Spark Streaming要更适合大屏应用。本文从笔者的实际工作经验抽象出简单的模型,并简要叙述计算流程(当然大部分都是源码)。
简化的子订单消息体如下。
{ "userId": 234567, "orderId": 2902306918400, "subOrderId": 2902306918401, "siteId": 10219, "siteName": "site_blabla", "cityId": 101, "cityName": "北京市", "warehouseId": 636, "merchandiseId": 187699, "price": 299, "quantity": 2, "orderStatus": 1, "isNewOrder": , "timestamp": 1572963672217 }
由于订单可能会包含多种商品,故会被拆分成子订单来表示,每条JSON消息表示一个子订单。现在要按照自然日来统计以下指标,并以1秒的刷新频率呈现在大屏上:
由于大屏的最大诉求是实时性,等待迟到数据显然不太现实,因此我们采用处理时间作为时间特征,并以1分钟的频率做checkpointing。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); env.enableCheckpointing(60 * 1000, CheckpointingMode.EXACTLY_ONCE); env.getCheckpointConfig().setCheckpointTimeout(30 * 1000);
然后订阅Kafka的订单消息作为数据源。
Properties consumerProps = ParameterUtil.getFromResourceFile("kafka.properties"); DataStream<String> sourceStream = env .addSource(new FlinkKafkaConsumer011<>( ORDER_EXT_TOPIC_NAME, // topic new SimpleStringSchema(), // deserializer consumerProps // consumer properties )) .setParallelism(PARTITION_COUNT) .name("source_kafka_" + ORDER_EXT_TOPIC_NAME) .uid("source_kafka_" + ORDER_EXT_TOPIC_NAME);
给带状态的算子设定算子ID(通过调用uid()方法)是个好习惯,能够保证Flink应用从保存点重启时能够正确恢复状态现场。为了尽量稳妥,Flink官方也建议为每个算子都显式地设定ID,参考:https://ci.apache.org/projects/flink/flink-docs-stable/ops/state/savepoints.html#should-i-assign-ids-to-all-operators-in-my-job
接下来将JSON数据转化为POJO,JSON框架采用FastJSON。
DataStream<SubOrderDetail> orderStream = sourceStream .map(message -> JSON.parseObject(message, SubOrderDetail.class)) .name("map_sub_order_detail").uid("map_sub_order_detail");
JSON已经是预先处理好的标准化格式,所以POJO类SubOrderDetail的写法可以通过Lombok极大地简化。如果JSON的字段有不规范的,那么就需要手写Getter和Setter,并用@JSONField注解来指明。
@Getter @Setter @NoArgsConstructor @AllArgsConstructor @ToString public class SubOrderDetail implements Serializable { private static final long serialVersionUID = 1L; private long userId; private long orderId; private long subOrderId; private long siteId; private String siteName; private long cityId; private String cityName; private long warehouseId; private long merchandiseId; private long price; private long quantity; private int orderStatus; private int isNewOrder; private long timestamp; }
将子订单流按站点ID分组,开1天的滚动窗口,并同时设定ContinuousProcessingTimeTrigger触发器,以1秒周期触发计算。注意二手手机号出售处理时间的时区问题,这是老生常谈了。
WindowedStream<SubOrderDetail, Tuple, TimeWindow> siteDayWindowStream = orderStream .keyBy("siteId") .window(TumblingProcessingTimeWindows.of(Time.days(1), Time.hours(-8))) .trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(1)));
接下来写个聚合函数。
DataStream<OrderAccumulator> siteAggStream = siteDayWindowStream .aggregate(new OrderAndGmvAggregateFunc()) .name("aggregate_site_order_gmv").uid("aggregate_site_order_gmv");
public static final class OrderAndGmvAggregateFunc implements AggregateFunction<SubOrderDetail, OrderAccumulator, OrderAccumulator> { private static final long serialVersionUID = 1L; @Override public OrderAccumulator createAccumulator() { return new OrderAccumulator(); } @Override public OrderAccumulator add(SubOrderDetail record, OrderAccumulator acc) { if (acc.getSiteId() == ) { acc.setSiteId(record.getSiteId()); acc.setSiteName(record.getSiteName()); } acc.addOrderId(record.getOrderId()); acc.addSubOrderSum(1); acc.addQuantitySum(record.getQuantity()); acc.addGmv(record.getPrice() * record.getQuantity()); return acc; } @Override public OrderAccumulator getResult(OrderAccumulator acc) { return acc; } @Override public OrderAccumulator merge(OrderAccumulator acc1, OrderAccumulator acc2) { if (acc1.getSiteId() == ) { acc1.setSiteId(acc2.getSiteId()); acc1.setSiteName(acc2.getSiteName()); } acc1.addOrderIds(acc2.getOrderIds()); acc1.addSubOrderSum(acc2.getSubOrderSum()); acc1.addQuantitySum(acc2.getQuantitySum()); acc1.addGmv(acc2.getGmv()); return acc1; } }
累加器类OrderAccumulator的实现很简单,看源码就大概知道它的结构了,因此不再多废话。唯一需要注意的是订单ID可能重复,所以需要用名为orderIds的HashSet来保存它。HashSet应付我们目前的数据规模还是没太大问题的,如果是海量数据,就考虑换用HyperLogLog吧。
接下来就该输出到Redis供呈现端查询了。这里有个问题:一秒内有数据变化的站点并不多,而ContinuousProcessingTimeTrigger每次触发都会输出窗口里全部的聚合数据,这样做了很多无用功,并且还会增大Redis的压力。所以,我们在聚合结果后再接一个ProcessFunction,代码如下。
DataStream<Tuple2<Long, String>> siteResultStream = siteAggStream .keyBy() .process(new OutputOrderGmvProcessFunc(), TypeInformation.of(new TypeHint<Tuple2<Long, String>>() {})) .name("process_site_gmv_changed").uid("process_site_gmv_changed");
public static final class OutputOrderGmvProcessFunc extends KeyedProcessFunction<Tuple, OrderAccumulator, Tuple2<Long, String>> { private static final long serialVersionUID = 1L; private MapState<Long, OrderAccumulator> state; @Override public void open(Configuration parameters) throws Exception { super.open(parameters); state = this.getRuntimeContext().getMapState(new MapStateDescriptor<>( "state_site_order_gmv", Long.class, OrderAccumulator.class) ); } @Override public void processElement(OrderAccumulator value, Context ctx, Collector<Tuple2<Long, String>> out) throws Exception { long key = value.getSiteId(); OrderAccumulator cachedValue = state.get(key); if (cachedValue == null || value.getSubOrderSum() != cachedValue.getSubOrderSum()) { JSONObject result = new JSONObject(); result.put("site_id", value.getSiteId()); result.put("site_name", value.getSiteName()); result.put("quantity", value.getQuantitySum()); result.put("orderCount", value.getOrderIds().size()); result.put("subOrderCount", value.getSubOrderSum()); result.put("gmv", value.getGmv()); out.collect(new Tuple2<>(key, result.toJSONString()); state.put(key, value); } } @Override public void close() throws Exception { state.clear(); super.close(); } }
说来也简单,就是用一个MapState状态缓存当前所有站点的聚合数据。由于数据源是以子订单为单位的,因此如果站点ID在MapState中没有缓存,或者缓存的子订单数与当前子订单数不一致,表示结果有更新,这样的数据才允许输出。
最后就可以安心地接上Redis Sink了,结果会被存进一个Hash结构里。
// 看官请自己构造合适的FlinkJedisPoolConfig FlinkJedisPoolConfig jedisPoolConfig = ParameterUtil.getFlinkJedisPoolConfig(false, true); siteResultStream .addSink(new RedisSink<>(jedisPoolConfig, new GmvRedisMapper())) .name("sink_redis_site_gmv").uid("sink_redis_site_gmv") .setParallelism(1);
public static final class GmvRedisMapper implements RedisMapper<Tuple2<Long, String>> { private static final long serialVersionUID = 1L; private static final String HASH_NAME_PREFIX = "RT:DASHBOARD:GMV:"; @Override public RedisCommandDescription getCommandDescription() { return new RedisCommandDescription(RedisCommand.HSET, HASH_NAME_PREFIX); } @Override public String getKeyFromData(Tuple2<Long, String> data) { return String.valueOf(data.f0); } @Override public String getValueFromData(Tuple2<Long, String> data) { return data.f1; } @Override public Optional<String> getAdditionalKey(Tuple2<Long, String> data) { return Optional.of( HASH_NAME_PREFIX + new LocalDateTime(System.currentTimeMillis()).toString(Consts.TIME_DAY_FORMAT) + "SITES" ); } }
我们可以直接复用前面产生的orderStream,玩法与上面的GMV统计大同小异。这里用1秒滚动窗口就可以了。
WindowedStream<SubOrderDetail, Tuple, TimeWindow> merchandiseWindowStream = orderStream .keyBy("merchandiseId") .window(TumblingProcessingTimeWindows.of(Time.seconds(1))); DataStream<Tuple2<Long, Long>> merchandiseRankStream = merchandiseWindowStream .aggregate(new MerchandiseSalesAggregateFunc(), new MerchandiseSalesWindowFunc()) .name("aggregate_merch_sales").uid("aggregate_merch_sales") .returns(TypeInformation.of(new TypeHint<Tuple2<Long, Long>>() { }));
聚合函数与窗口函数的实现更加简单了,最终返回的是商品ID与商品销量的二元组。
public static final class MerchandiseSalesAggregateFunc implements AggregateFunction<SubOrderDetail, Long, Long> { private static final long serialVersionUID = 1L; @Override public Long createAccumulator() { return 0L; } @Override public Long add(SubOrderDetail value, Long acc) { return acc + value.getQuantity(); } @Override public Long getResult(Long acc) { return acc; } @Override public Long merge(Long acc1, Long acc2) { return acc1 + acc2; } } public static final class MerchandiseSalesWindowFunc implements WindowFunction<Long, Tuple2<Long, Long>, Tuple, TimeWindow> { private static final long serialVersionUID = 1L; @Override public void apply( Tuple key, TimeWindow window, Iterable<Long> accs, Collector<Tuple2<Long, Long>> out) throws Exception { long merchId = ((Tuple1<Long>) key).f0; long acc = accs.iterator().next(); out.collect(new Tuple2<>(merchId, acc)); } }
既然数据最终都要落到Redis,那么我们完全没必要在Flink端做Top N的统计,直接利用Redis的有序集合(zset)就行了,商品ID作为field,销量作为分数值,简单方便。不过flink-redis-connector项目中默认没有提供ZINCRBY命令的实现(必须再吐槽一次),我们可以自己加,步骤参照之前写过的那篇加SETEX的命令的文章,不再赘述。RedisMapper的写法如下。
public static final class RankingRedisMapper implements RedisMapper<Tuple2<Long, Long>> { private static final long serialVersionUID = 1L; private static final String ZSET_NAME_PREFIX = "RT:DASHBOARD:RANKING:"; @Override public RedisCommandDescription getCommandDescription() { return new RedisCommandDescription(RedisCommand.ZINCRBY, ZSET_NAME_PREFIX); } @Override public String getKeyFromData(Tuple2<Long, Long> data) { return String.valueOf(data.f0); } @Override public String getValueFromData(Tuple2<Long, Long> data) { return String.valueOf(data.f1); } @Override public Optional<String> getAdditionalKey(Tuple2<Long, Long> data) { return Optional.of( ZSET_NAME_PREFIX + new LocalDateTime(System.currentTimeMillis()).toString(Consts.TIME_DAY_FORMAT) + ":" + "MERCHANDISE" ); } }
后端取数时,用ZREVRANGE命令即可取出指定排名的数据了。只要数据规模不是大到难以接受,并且有现成的Redis,这个方案完全可以作为各类Top N需求的通用实现。
大屏的实际呈现需要保密,截图自然是没有的。以下是提交执行时Flink Web UI给出的执行计划(实际有更多的统计任务,不止3个Sink)。通过复用源数据,可以在同一个Flink job内实现更多统计需求。