在前面precision,recall 以及F1评判指标下引入
F
β
F_\beta
Fβ:
F
β
=
(
1
+
β
)
⋅
p
r
e
c
i
s
i
o
n
⋅
r
e
c
a
l
l
β
2
⋅
p
r
e
c
i
s
i
o
n
+
r
e
c
a
l
l
F_{\beta}=\frac{(1+\beta)\cdot precision \cdot recall}{\beta^{2} \cdot precision+recall}
Fβ=β2⋅precision+recall(1+β)⋅precision⋅recall
import numpy as np import pandas as pd from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 利用SVM对鸢尾花进行分类 #导入鸢尾花数据集 data = pd.read_csv('./iris.csv') print(data) #选择特征值X,为花萼长和花萼宽为和目标值Y X,Y = data.iloc[:,[2,3]],data.iloc[:,5] #将目标值Y分类成0,1,2 三个类别 Y=pd.Categorical(Y).codes #拆分数据 x_train,x_test,y_train,y_test = train_test_split(X,Y,random_state=1,test_size=0.75) #选择svm分类器并开始分类 clf = svm.SVC(C=0.1,kernel='linear',decision_function_shape='ovr') clf.fit(x_train,y_train) #准确率 y_hat = clf.predict(x_test) print(y_hat) print('准确率为:',clf.score(x_test,y_test)) print('准确率为:',accuracy_score(y_hat,y_test))
输出:
Unnamed: 0 Sepal.Length ... Petal.Width Species 0 1 5.1 ... 0.2 setosa 1 2 4.9 ... 0.2 setosa 2 3 4.7 ... 0.2 setosa 3 4 4.6 ... 0.2 setosa 4 5 5.0 ... 0.2 setosa .. ... ... ... ... ... 145 146 6.7 ... 2.3 virginica 146 147 6.3 ... 1.9 virginica 147 148 6.5 ... 2.0 virginica 148 149 6.2 ... 2.3 virginica 149 150 5.9 ... 1.8 virginica [150 rows x 6 columns] [0 1 1 0 2 1 1 0 0 2 1 0 2 1 1 0 1 1 0 0 1 1 1 0 2 1 0 0 1 1 1 2 1 2 1 0 1 0 1 2 2 0 1 2 1 2 0 0 0 1 0 0 2 2 2 2 1 1 2 1 0 1 1 0 0 2 0 1 1 1 1 2 1 0 1 1 2 1 2 1 0 0 0 2 0 1 2 1 0 0 1 0 2 1 2 2 1 2 2 1 0 1 0 1 1 0 1 0 0 2 1 2 0] 准确率为: 0.8938053097345132 准确率为: 0.8938053097345132 Process finished with exit code 0