Python教程

Python实现数据透视表

本文主要是介绍Python实现数据透视表,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

用Python里的Pandas可以实现,虽然感觉Excel更方便

1.groupby + agg

不够直观,不好看
对贷款年份,贷款种类创建数据透视

train_data.groupby(['year_of_loan', 'class']).agg(d_roat =('isDefault', 'mean'))

在这里插入图片描述

2. crosstab

pandas.crosstab(index, columns,values, rownames=None, colnames, 
				aggfunc, margins, margins_name, dropna, normalize)

主要用到的参数:
index:选哪个变量做数据透视表的行
columns:选哪个变量做数据透视表的列
values:要聚合的值
aggfunc:使用的聚合函数
margins:是否添加汇总列/行
margins_name:汇总行/列的名字

例子

对贷款年份,贷款种类创建数据透视

pd.crosstab(train_data['year_of_loan'], train_data['class'], train_data['loan_id'], aggfunc='count',margins = True, margins_name = '合计')

在这里插入图片描述
可以直接看出交叉组合之后违约比例

pd.crosstab(train_data['year_of_loan'], train_data['class'], train_data['isDefault'], aggfunc='mean')

在这里插入图片描述

3.groupby + pivot

train_data.groupby(['year_of_loan', 'class'], as_index = False)['isDefault'].mean().pivot('year_of_loan', 'class', 'isDefault')

在这里插入图片描述

pivot_table

pandas.pivot_table(data, values, index, columns, aggfunc, fill_value, 
					margins, dropna, margins_name, observed, sort)

常用参数与crosstab一致

例子

实现同样的数据透视表

pd.pivot_table(train_data[['year_of_loan', 'class', 'isDefault']],
			  values='isDefault', index=['year_of_loan'], columns=['class'], 
			  aggfunc='count',  margins = True, margins_name = '合计')

在这里插入图片描述

pd.pivot_table(train_data[['year_of_loan', 'class', 'isDefault']],
			   values='isDefault', index=['year_of_loan'], columns=['class'], 
			   aggfunc='mean')

在这里插入图片描述

这篇关于Python实现数据透视表的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!