C++11 之前,C++ 语言没有对并发编程提供语言级别的支持,这使得我们在编写可移植的并发程序时,存在诸多的不便。现在 C++11 中增加了线程以及线程相关的类,很方便地支持了并发编程,使得编写的多线程程序的可移植性得到了很大的提高。
C++11 中提供的线程类叫做 std::thread,基于这个类创建一个新的线程非常的简单,只需要提供线程函数或者函数对象即可,并且可以同时指定线程函数的参数。我们首先来了解一下这个类提供的一些常用 API:
// ① thread() noexcept; // ② thread( thread&& other ) noexcept; // ③ template< class Function, class... Args > explicit thread( Function&& f, Args&&... args ); // ④ thread( const thread& ) = delete;
构造函数①:默认构造函,构造一个线程对象,在这个线程中不执行任何处理动作
构造函数②:移动构造函数,将 other 的线程所有权转移给新的 thread 对象。之后 other 不再表示执行线程。
构造函数③:创建线程对象,并在该线程中执行函数 f 中的业务逻辑,args 是要传递给函数 f 的参数
任务函数 f 的可选类型有很多,具体如下: 普通函数,类成员函数,匿名函数,仿函数(这些都是可调用对象类型) 可以是可调用对象包装器类型,也可以是使用绑定器绑定之后得到的类型(仿函数)
构造函数④:使用 =delete 显示删除拷贝构造,不允许线程对象之间的拷贝
应用程序启动之后默认只有一个线程,这个线程一般称之为主线程或父线程,通过线程类创建出的线程一般称之为子线程,每个被创建出的线程实例都对应一个线程 ID,这个 ID 是唯一的,可以通过这个 ID 来区分和识别各个已经存在的线程实例,这个获取线程 ID 的函数叫做 get_id(),函数原型如下:
std::thread::id get_id() const noexcept;
示例程序如下:
#include <iostream> #include <thread> #include <chrono> using namespace std; void func(int num, string str) { for (int i = 0; i < 10; ++i) { cout << "子线程: i = " << i << "num: " << num << ", str: " << str << endl; } } void func1() { for (int i = 0; i < 10; ++i) { cout << "子线程: i = " << i << endl; } } int main() { cout << "主线程的线程ID: " << this_thread::get_id() << endl; thread t(func, 520, "i love you"); thread t1(func1); cout << "线程t 的线程ID: " << t.get_id() << endl; cout << "线程t1的线程ID: " << t1.get_id() << endl; }
在上面的示例程序中有一个 bug,在主线程中依次创建出两个子线程,打印两个子线程的线程 ID,最后主线程执行完毕就退出了(主线程就是执行 main () 函数的那个线程)。默认情况下,主线程销毁时会将与其关联的两个子线程也一并销毁,但是这时有可能子线程中的任务还没有执行完毕,最后也就得不到我们想要的结果了。
当启动了一个线程(创建了一个 thread 对象)之后,在这个线程结束的时候(std::terminate ()),我们如何去回收线程所使用的资源呢?thread 库给我们两种选择:
加入式:join() 分离式:detach()
我们必须要在线程对象销毁之前在二者之间作出选择,否则程序运行期间就会有 bug 产生。
如果要阻塞主线程的执行,只需要在主线程中通过子线程对象调用这个方法即可,当调用这个方法的子线程对象中的任务函数执行完毕之后,主线程的阻塞也就随之解除了。该函数的函数原型如下:
void join();
上面的代码修改如下:
int main() { cout << "主线程的线程ID: " << this_thread::get_id() << endl; thread t(func, 520, "i love you"); thread t1(func1); cout << "线程t 的线程ID: " << t.get_id() << endl; cout << "线程t1的线程ID: " << t1.get_id() << endl; t.join(); t1.join(); }
编译输出如下:
当主线程运行到第八行 t.join();,根据子线程对象 t 的任务函数 func() 的执行情况,主线程会做如下处理:
同样,第 9 行的代码亦如此。
detach() 函数的作用是进行线程分离,分离主线程和创建出的子线程。在线程分离之后,主线程退出也会一并销毁创建出的所有子线程,在主线程退出之前,它可以脱离主线程继续独立的运行,任务执行完毕之后,这个子线程会自动释放自己占用的系统资源。(其实就是孩子翅膀硬了,和家里断绝关系,自己外出闯荡了,如果家里被诛九族还是会受牵连)。该函数函数原型如下:
void detach();
线程分离函数没有参数也没有返回值,只需要在线程成功之后,通过线程对象调用该函数即可,继续将上面的测试程序修改一下:
int main() { cout << "主线程的线程ID: " << this_thread::get_id() << endl; thread t(func, 520, "i love you"); thread t1(func1); cout << "线程t 的线程ID: " << t.get_id() << endl; cout << "线程t1的线程ID: " << t1.get_id() << endl; t.detach(); t1.detach(); // 让主线程休眠, 等待子线程执行完毕 this_thread::sleep_for(chrono::seconds(5)); }
编译输出:
Note:
注意事项:线程分离函数 detach () 不会阻塞线程,子线程和主线程分离之后,在主线程中就不能再对这个子线程做任何控制了,比如:通过 join () 阻塞主线程等待子线程中的任务执行完毕,或者调用 get_id () 获取子线程的线程 ID。有利就有弊,鱼和熊掌不可兼得,建议使用 join ()。
用来判断是否能够调用join()或者detach(),可以返回true,不可以返回false.
实例代码如下:
// C++ program to demonstrate the use of // std::thread::joinable() #include <chrono> #include <iostream> #include <thread> using namespace std; // function to put thread to sleep void threadFunc() { std::this_thread::sleep_for( std::chrono::seconds(1)); } int main() { std::thread t1; // declaring the thread cout << "t1 joinable when default created? \n"; // checking if it is joinable if (t1.joinable()) cout << "YES\n"; else cout << "NO\n"; // calling the function threadFunc // to put thread to sleep t1 = std::thread(threadFunc); cout << "t1 joinable when put to sleep? \n"; // checking if t1 is joinable if (t1.joinable()) cout << "YES\n"; else cout << "NO\n"; // joining t1 t1.join(); // checking joinablity of t1 after calling join() cout << "t1 joinable after join is called? \n"; if (t1.joinable()) cout << "YES\n"; else cout << "NO\n"; return 0; }
编译输出:
在以下情况下,线程不可联接:
线程中的资源是不能被复制的,因此通过 = 操作符进行赋值操作最终并不会得到两个完全相同的对象。
// move (1) thread& operator= (thread&& other) noexcept; // copy [deleted] (2) thread& operator= (const other&) = delete;
通过以上 = 操作符的重载声明可以得知:
thread 线程类还提供了一个静态方法,用于获取当前计算机的 CPU 核心数,根据这个结果在程序中创建出数量相等的线程,每个线程独自占有一个CPU核心,这些线程就不用分时复用CPU时间片,此时程序的并发效率是最高的。
static unsigned hardware_concurrency() noexcept;
示例代码如下:
#include <iostream> #include <thread> using namespace std; int main() { int num = thread::hardware_concurrency(); cout << "CPU number: " << num << endl; }