Java教程

01-复杂度分析

本文主要是介绍01-复杂度分析,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

复杂度分析

  • 1.大0表示法
  • 2.时间复杂度分析
  • 3.几种常见时间复杂度
  • 4.空间复杂度分析
  • 5.复杂度分析拓展

复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。

1.大0表示法

所有代码的执行时间 T(n) 与每行代码的执行次数 f(n) 成正比。我们可以把这个规律总结成一个公式。

img

具体解释一下这个公式。其中,T(n) 我们已经讲过了,它表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。

这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。

当 n 很大时,你可以把它想象成 10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了。

2.时间复杂度分析

如何分析一段代码的时间复杂度?我这儿有三个比较实用的方法。

  1. 只关注循环执行次数最多的一段代码

大 O 这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行次数的 n 的量级,就是整段要分析代码的时间复杂度。

 int cal(int n) 
 {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) 
   {
     sum = sum + i;
   }
   return sum;
 }

其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)。

  1. 加法法则:总复杂度等于量级最大的那段代码的复杂度
int cal(int n) 
{
   int sum_1 = 0;
   int p = 1;
   for (; p < 100; ++p) 
   {
     sum_1 = sum_1 + p;
   }

   int sum_2 = 0;
   int q = 1;
   for (; q < n; ++q)
   {
     sum_2 = sum_2 + q;
   }
 
   int sum_3 = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) 
   {
     j = 1; 
     for (; j <= n; ++j) 
     {
       sum_3 = sum_3 +  i * j;
     }
   }
 
   return sum_1 + sum_2 + sum_3;
 }

这个代码分为三部分,分别是求 sum_1、sum_2、sum_3。我们可以分别分析每一部分的时间复杂度,然后把它们放到一块儿,再取一个量级最大的作为整段代码的复杂度。

第一段的时间复杂度是多少呢?这段代码循环执行了 100 次,所以是一个常量的执行时间,跟 n 的规模无关。这里我要再强调一下,即便这段代码循环 10000 次、100000 次,只要是一个已知的数,跟 n 无关,照样也是常量级的执行时间。当 n 无限大的时候,就可以忽略。尽管对代码的执行时间会有很大影响,但是回到时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有影响。

那第二段代码和第三段代码的时间复杂度是多少呢?答案是 O(n) 和 O(n^2),你应该能容易就分析出来,我就不啰嗦了。

综合这三段代码的时间复杂度,我们取其中最大的量级。所以,整段代码的时间复杂度就为 O(n^2)。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规律抽象成公式就是:

如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).

  1. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

如果 T1(n)=O(f(n)),T2(n)=O(g(n));那么 T(n)=T1(n)*T2(n) = O(f(n)) * O(g(n))=O(f(n)*g(n)).

也就是说,假设 T1(n) = O(n),T2(n) = O(n^2),则 T1(n) * T2(n) = O(n3)。落实到具体的代码上,我们可以把乘法法则看成是嵌套循环,我举个例子给你解释一下。

int cal(int n) 
{
   int ret = 0; 
   int i = 1;
   for (; i < n; ++i) 
   {
     ret = ret + f(i);
   } 
 } 
 
 int f(int n) 
 {
  int sum = 0;
  int i = 1;
  for (; i < n; ++i) 
  {
    sum = sum + i;
  } 
  return sum;
 }

我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4~6 行的时间复杂度就是,T1(n) = O(n)。但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) = O(n),所以,整个 cal() 函数的时间复杂度就是,

T(n) = T1(n) * T2(n) = O(n*n) = O(n^2)。

3.几种常见时间复杂度

img

4.空间复杂度分析

空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。

void print(int n) 
{
  int i = 0;
  int[] a = new int[n];
  for (i; i <n; ++i) 
  {
    a[i] = i * i;
  }

  for (i = n-1; i >= 0; --i) 
  {
    print out a[i]
  }
}

跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。

常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n^2 )。

img

5.复杂度分析拓展

最好情况时间复杂度(best case time complexity)、最坏情况时间复杂度(worst case time complexity)、平均情况时间复杂度(average case time complexity)、均摊时间复杂度(amortized time complexity)。

这篇关于01-复杂度分析的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!