我们知道,sql-client.sh可以提供给我们一个sql交互界面,让我们没执行一个sql,就可以看到执行结果,也可以交互式查询表的结果。
其实,我们也可以通过sql-client提交sql脚本,我们来看下。
./bin/sql-client.sh -h
对应的帮助参数:
(base) [chenzuoli@chenzuolis-MacBook /Volumes/chenzuoli/Data/docker_img/flink-1.12.1]$./bin/sql-client.sh -h ./sql-client [MODE] [OPTIONS] The following options are available: Mode "embedded" submits Flink jobs from the local machine. Syntax: embedded [OPTIONS] "embedded" mode options: -d,--defaults <environment file> The environment properties with which every new session is initialized. Properties might be overwritten by session properties. -e,--environment <environment file> The environment properties to be imported into the session. It might overwrite default environment properties. -h,--help Show the help message with descriptions of all options. -hist,--history <History file path> The file which you want to save the command history into. If not specified, we will auto-generate one under your user's home directory. -j,--jar <JAR file> A JAR file to be imported into the session. The file might contain user-defined classes needed for the execution of statements such as functions, table sources, or sinks. Can be used multiple times. -l,--library <JAR directory> A JAR file directory with which every new session is initialized. The files might contain user-defined classes needed for the execution of statements such as functions, table sources, or sinks. Can be used multiple times. -pyarch,--pyArchives <arg> Add python archive files for job. The archive files will be extracted to the working directory of python UDF worker. Currently only zip-format is supported. For each archive file, a target directory be specified. If the target directory name is specified, the archive file will be extracted to a name can directory with the specified name. Otherwise, the archive file will be extracted to a directory with the same name of the archive file. The files uploaded via this option are accessible via relative path. '#' could be used as the separator of the archive file path and the target directory name. Comma (',') could be used as the separator to specify multiple archive files. This option can be used to upload the virtual environment, the data files used in Python UDF (e.g.: --pyArchives file:///tmp/py37.zip,file:///tmp/data .zip#data --pyExecutable py37.zip/py37/bin/python). The data files could be accessed in Python UDF, e.g.: f = open('data/data.txt', 'r'). -pyexec,--pyExecutable <arg> Specify the path of the python interpreter used to execute the python UDF worker (e.g.: --pyExecutable /usr/local/bin/python3). The python UDF worker depends on Python 3.5+, Apache Beam (version == 2.23.0), Pip (version >= 7.1.0) and SetupTools (version >= 37.0.0). Please ensure that the specified environment meets the above requirements. -pyfs,--pyFiles <pythonFiles> Attach custom python files for job. These files will be added to the PYTHONPATH of both the local client and the remote python UDF worker. The standard python resource file suffixes such as .py/.egg/.zip or directory are all supported. Comma (',') could be used as the separator to specify multiple files (e.g.: --pyFiles file:///tmp/myresource.zip,hdfs:///$n amenode_address/myresource2.zip). -pyreq,--pyRequirements <arg> Specify a requirements.txt file which defines the third-party dependencies. These dependencies will be installed and added to the PYTHONPATH of the python UDF worker. A directory which contains the installation packages of these dependencies could be specified optionally. Use '#' as the separator if the optional parameter exists (e.g.: --pyRequirements file:///tmp/requirements.txt#file:/// tmp/cached_dir). -s,--session <session identifier> The identifier for a session. 'default' is the default identifier. -u,--update <SQL update statement> Experimental (for testing only!): Instructs the SQL Client to immediately execute the given update statement after starting up. The process is shut down after the statement has been submitted to the cluster and returns an appropriate return code. Currently, this feature is only supported for INSERT INTO statements that declare the target sink table.
其中第一个参数-d
,可以指定一些环境上的参数配置。
接下来,我们看看conf/sql-client-defaults.yaml
文件,这个文件其实就是对应的配置文件。
创建测试用的数据文件:
mkdir sql_test vim sql_test/book-store.csv 枪炮、病菌和钢铁,18,社会学 APP UI设计之道,20,设计 通证经济,22,经济学 区块链的真正商机,21,经济学
我们再来创建一个自己的配置文件,读取csv文件,然后select出来,新建文件conf/book-store.yaml
vim conf/book-store.yaml tables: - name: BookStore type: source-table update-mode: append connector: type: filesystem path: "/Users/zhaoqin/temp/202004/26/book-store.csv" format: type: csv fields: - name: BookName type: VARCHAR - name: BookAmount type: INT - name: BookCatalog type: VARCHAR line-delimiter: "\n" comment-prefix: "," schema: - name: BookName type: VARCHAR - name: BookAmount type: INT - name: BookCatalog type: VARCHAR - name: MyBookView type: view query: "SELECT BookCatalog, SUM(BookAmount) AS Amount FROM BookStore GROUP BY BookCatalog" execution: planner: blink # optional: either 'blink' (default) or 'old' type: streaming # required: execution mode either 'batch' or 'streaming' result-mode: table # required: either 'table' or 'changelog' max-table-result-rows: 1000000 # optional: maximum number of maintained rows in # 'table' mode (1000000 by default, smaller 1 means unlimited) time-characteristic: event-time # optional: 'processing-time' or 'event-time' (default) parallelism: 1 # optional: Flink's parallelism (1 by default) periodic-watermarks-interval: 200 # optional: interval for periodic watermarks (200 ms by default) max-parallelism: 16 # optional: Flink's maximum parallelism (128 by default) min-idle-state-retention: 0 # optional: table program's minimum idle state time max-idle-state-retention: 0 # optional: table program's maximum idle state time # (default database of the current catalog by default) restart-strategy: # optional: restart strategy type: fallback # "fallback" to global restart strategy by default # Configuration options for adjusting and tuning table programs. # A full list of options and their default values can be found # on the dedicated "Configuration" page. configuration: table.optimizer.join-reorder-enabled: true table.exec.spill-compression.enabled: true table.exec.spill-compression.block-size: 128kb # Properties that describe the cluster to which table programs are submitted to. deployment: response-timeout: 5000
通过指定配置文件的方式,来启动一个session,执行相应的source-table和sink-table。
其中关于book-store.yaml配置文件,有几点需要注意:
a. tables.type等于source-table,表明这是数据源的配置信息;
b. tables.connector描述了详细的数据源信息,path是book-store.csv文件的完整路径,connector的type指定为filesystem,这跟我们写sql的时候指定的connector参数是一致的;
c. tables.format描述了文件内容,type为csv格式;
d. tables.schema描述了数据源表的表结构;
ed. type为view表示MyBookView是个视图(参考数据库的视图概念);
下面来看一下测试结果:
./bin/start-cluster.sh ./bin/sql-client.sh embedded -d conf/book-store.yaml
进入sql-client sql交互界面之后,可以看到环境已经配置好了,
Flink SQL> show tables; BookStore MyBookView Flink SQL> desc BookStore; +-------------+--------+------+-----+--------+-----------+ | name | type | null | key | extras | watermark | +-------------+--------+------+-----+--------+-----------+ | BookName | STRING | true | | | | | BookAmount | INT | true | | | | | BookCatalog | STRING | true | | | | +-------------+--------+------+-----+--------+-----------+ 3 rows in set Flink SQL> desc MyBookView > ; +-------------+--------+------+-----+--------+-----------+ | name | type | null | key | extras | watermark | +-------------+--------+------+-----+--------+-----------+ | BookCatalog | STRING | true | | | | | Amount | INT | true | | | | +-------------+--------+------+-----+--------+-----------+ 2 rows in set
可以看到两个表已经创建好了,我们可以看一下数据:
select * from MyBookView; BookCatalog Amount 社会学 18 设计 20 经济学 43
对不对,ok了,你要是yaml文件中写有sink-table那么,直接就提交了一个flink job到flink集群了,是不是达到了提交flink sql脚本文件的效果了。
好了,今天就这样,因为这几天在倒腾公司数据平台组开发的一个 流数据平台,发现他们是通过sql-client,提交到k8s上的,这一个提交任务方式,着实让我感到意外。因为之前翻译过一篇官方提供的flink submit job的文章,里面提到了四种提交方式:
ok,下次见。
flink, yyds.
书山有路勤为径,学海无涯苦作舟。
欢迎关注我的微信公众号,比较喜欢分享知识,也喜欢宠物,所以做了这2个公众号:
喜欢宠物的朋友可以关注:【电巴克宠物Pets】
一起学习,一起进步。