Java教程

Java多线程

本文主要是介绍Java多线程,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

重点部分:线程的创建与使用、线程的同步

 

基本概念:程序、进程、线程
程序(program)是为完成特定任务、用某种语言编写的一组指令的集合。即指一段静态的代码,静态对象。   进程(process)是程序的一次执行过程,或是正在运行的一个程序。是一个动态的过程:有它自身的产生、存在和消亡的过程。——生命周期   线程(thread),进程可进一步细化为线程,是一个程序内部的一条执行路径。   并行:多个CPU同时执行多个任务。比如:多个人同时做不同的事。 并发:一个CPU(采用时间片)同时执行多个任务。比如:秒杀、多个人做同一件事。   一个Java应用程序java.exe,其实至少有三个线程:main()主线程,gc()垃圾回收线程,异常处理线程。当然如果发生异常,会影响主线程。   使用多线程的优点:   1. 提高应用程序的响应。对图形化界面更有意义,可增强用户体验。   2. 提高计算机系统CPU的利用率   3. 改善程序结构。将既长又复杂的进程分为多个线程,独立运行,利于理解和修改    

多线程的创建与使用


 

一、Thread类
构造器
Thread()://创建新的Thread对象

Thread(String threadname)://创建线程并指定线程实例名

Thread(Runnable target)://指定创建线程的目标对象,它实现了Runnable接口中的run方法

Thread(Runnable target, String name)://创建新的Thread对象

 

二、API中创建线程的两种方式

JDK1.5之前创建新执行线程有两种方法:继承Thread类的方式                    实现Runnable接口的方式 方式一:继承Thread类   1) 定义子类继承Thread类。   2) 子类中重写Thread类中的run方法。   3) 创建Thread子类对象,即创建了线程对象。   4) 调用线程对象start方法:启动线程,调用run方法。
/**
 * 多线程的创建,方式一:继承于Thread类
 * 1. 创建一个继承于Thread类的子类
 * 2. 重写Thread类的run() --> 将此线程执行的操作声明在run()中
 * 3. 创建Thread类的子类的对象
 * 4. 通过此对象调用start()
 * <p>
 * 例子:遍历100以内的所有的偶数
 *
 */

//1. 创建一个继承于Thread类的子类
class MyThread extends Thread {
    //2. 重写Thread类的run()
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            if(i % 2 == 0){
                System.out.println(Thread.currentThread().getName() + ":" + i);
            }
        }
    }
}


public class ThreadTest {
    public static void main(String[] args) {
        //3. 创建Thread类的子类的对象
        MyThread t1 = new MyThread();

        //4.通过此对象调用start():①启动当前线程 ② 调用当前线程的run()
        t1.start();
        //问题一:我们不能通过直接调用run()的方式启动线程。用run的时候,只会启动一个线程(main主线程),只是体现了方法的调用,而不是多线程
//        t1.run();

        //问题二:再启动一个线程,遍历100以内的偶数。不可以还让已经start()的线程去执行。会报IllegalThreadStateException
//        t1.start();
        //我们需要重新创建一个线程的对象
        MyThread t2 = new MyThread();
        t2.start();


        //如下操作仍然是在main线程中执行的。
        for (int i = 0; i < 100; i++) {
            if(i % 2 == 0){
                System.out.println(Thread.currentThread().getName() + ":" + i + "***********main()************");
            }
        }
    }

}
多线程的创建,方式一:继承于Thread类

 

方式二:实现Runnable接口 1) 定义子类,实现Runnable接口。 2) 子类中重写Runnable接口中的run方法。 3) 通过Thread类含参构造器创建线程对象。 4) 将Runnable接口的子类对象作为实际参数传递给Thread类的构造器中。 5) 调用Thread类的start方法:开启线程,调用Runnable子类接口的run方法。
/*
 * 创建多线程的方式二:实现Runnable接口
 * 1. 创建一个实现了Runnable接口的类
 * 2. 实现类去实现Runnable中的抽象方法:run()
 * 3. 创建实现类的对象
 * 4. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象
 * 5. 通过Thread类的对象调用start()
 *
 *
 * 比较创建线程的两种方式。
 * 开发中:优先选择:实现Runnable接口的方式
 * 原因:1. 实现的方式没有类的单继承性的局限性
 *          2. 实现的方式更适合来处理多个线程有共享数据的情况。
 *
 * 联系:public class Thread implements Runnable
 * 相同点:两种方式都需要重写run(),将创建线程要执行的逻辑声明在run()中。
 */
//1. 创建一个实现了Runnable接口的类
class MThread implements Runnable{

    //2. 实现类去实现Runnable中的抽象方法:run()
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            if(i % 2 == 0){
                System.out.println(Thread.currentThread().getName() + ":" + i);
            }

        }
    }
}


public class ThreadTest1 {
    public static void main(String[] args) {
        //3. 创建实现类的对象
        MThread mThread = new MThread();
        //4. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象
        Thread t1 = new Thread(mThread);
        t1.setName("线程1");
        //5. 通过Thread类的对象调用start():① 启动线程 ②调用当前线程的run()-->调用了Runnable类型的target的run()
        t1.start();

        //再启动一个线程,遍历100以内的偶数
        Thread t2 = new Thread(mThread);
        t2.setName("线程2");
        t2.start();
    }

}
创建多线程的方式二:实现Runnable接口

 

public class ThreadDemo {
    public static void main(String[] args) {
//        MyThread1 m1 = new MyThread1();
//        MyThread2 m2 = new MyThread2();
//
//        m1.start();
//        m2.start();

        //创建Thread类的匿名子类的方式
        new Thread(){
            @Override
            public void run() {
                for (int i = 0; i < 100; i++) {
                    if(i % 2 == 0){
                        System.out.println(Thread.currentThread().getName() + ":" + i);

                    }
                }
            }
        }.start();


        new Thread(){
            @Override
            public void run() {
                for (int i = 0; i < 100; i++) {
                    if(i % 2 != 0){
                        System.out.println(Thread.currentThread().getName() + ":" + i);

                    }
                }
            }
        }.start();

    }
}

class MyThread1 extends Thread{
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            if(i % 2 == 0){
                System.out.println(Thread.currentThread().getName() + ":" + i);

            }
        }

    }
}


class MyThread2 extends Thread{
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            if(i % 2 != 0){
                System.out.println(Thread.currentThread().getName() + ":" + i);

            }
        }

    }
}
练习—创建Thread类的匿名子类的方式

 

三、继承方式和实现方式的联系与区别

1.  区别

  继承Thread:线程代码存放Thread子类run方法中。   实现Runnable:线程代码存在接口的子类的run方法。 2. 实现方式的好处:避免了单继承的局限性 多个线程可以共享同一个接口实现类的对象,非常适合多个相同线程来处理同一份资源。


Thread中的常用方法

测试Thread中的常用方法:
  1. start():启动当前线程;调用当前线程的run()
  2. run(): 通常需要重写Thread类中的此方法,将创建的线程要执行的操作声明在此方法中
  3. currentThread():静态方法,返回执行当前代码的线程
  4. getName():获取当前线程的名字
  5. setName():设置当前线程的名字
  6. yield():释放当前cpu的执行权
  7. join():在线程a中调用线程b的join(),此时线程a就进入阻塞状态,直到线程b完全执行完以后,线程a才结束阻塞状态。
  8. stop():已过时。当执行此方法时,强制结束当前线程。
  9. sleep(long millitime):让当前线程“睡眠”指定的millitime毫秒。在指定的millitime毫秒时间内,当前线程是阻塞状态。
  10. isAlive():判断当前线程是否存活

线程的优先级:
  1.
  MAX_PRIORITY:10
  MIN _PRIORITY:1
  NORM_PRIORITY:5  -->默认优先级
  2.如何获取和设置当前线程的优先级:
    getPriority():获取线程的优先级
    setPriority(int p):设置线程的优先级
 
说明:高优先级的线程要抢占低优先级线程cpu的执行权。但是只是从概率上讲,高优先级的线程高概率的情况下被执行。并不意味着只有当高优先级的线程执行完以后,低优先级的线程才执行。
 
class HelloThread extends Thread{
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            if(i % 2 == 0){

//                try {
//                    sleep(10);
//                } catch (InterruptedException e) {
//                    e.printStackTrace();
//                }

                System.out.println(Thread.currentThread().getName() + ":" + Thread.currentThread().getPriority() + ":" + i);
            }

//            if(i % 20 == 0){
//                yield();
//            }

        }

    }

    public HelloThread(String name){
        super(name);
    }
}


public class ThreadMethodTest {
    public static void main(String[] args) {

        HelloThread h1 = new HelloThread("Thread:1");

//        h1.setName("线程一");
        //设置分线程的优先级
        h1.setPriority(Thread.MAX_PRIORITY);

        h1.start();

        //给主线程命名
        Thread.currentThread().setName("主线程");
        Thread.currentThread().setPriority(Thread.MIN_PRIORITY);

        for (int i = 0; i < 100; i++) {
            if(i % 2 == 0){
                System.out.println(Thread.currentThread().getName() + ":" + Thread.currentThread().getPriority() + ":" + i);
            }

//            if(i == 20){
//                try {
//                    h1.join();
//                } catch (InterruptedException e) {
//                    e.printStackTrace();
//                }
//            }

        }

//        System.out.println(h1.isAlive());

    }
}
方法的使用

 

 

 

线程的生命周期


 

 

 

 

 

线程的同步
在Java中,我们通过同步机制,来解决线程的安全问题。

方式一: 同步代码块:
//1. 同步代码块:

synchronized (对象){
// 需要被同步的代码;
}

//2. synchronized还可以放在方法声明中,表示整个方法为同步方法。
例如:
public synchronized void show (String name){ 
….
}
说明:1.操作共享数据的代码,即为需要被同步的代码。  -->不能包含代码多了,也不能包含代码少了。
        2.共享数据:多个线程共同操作的变量。比如:ticket就是共享数据。
      3.同步监视器,俗称:锁。任何一个类的对象,都可以充当锁。
           要求:多个线程必须要共用同一把锁。
 
        补充:在实现Runnable接口创建多线程的方式中,我们可以考虑使用this充当同步监视器。但是慎用。

方式二:同步方法。
     如果操作共享数据的代码完整的声明在一个方法中,我们不妨将此方法声明同步的。
 
 
   5.同步的方式,解决了线程的安全问题。---好处
     操作同步代码时,只能有一个线程参与,其他线程等待。相当于是一个单线程的过程,效率低。 ---局限性
 
/**
 * 例子:创建三个窗口卖票,总票数为100张.使用实现Runnable接口的方式
 *
 * 1.问题:卖票过程中,出现了重票、错票 -->出现了线程的安全问题
 * 2.问题出现的原因:当某个线程操作车票的过程中,尚未操作完成时,其他线程参与进来,也操作车票。
 * 3.如何解决:当一个线程a在操作ticket的时候,其他线程不能参与进来。直到线程a操作完ticket时,其他
 *            线程才可以开始操作ticket。这种情况即使线程a出现了阻塞,也不能被改变。
 *
 */
class Window1 implements Runnable{

    private int ticket = 100;
//    Object obj = new Object();
//    Dog dog = new Dog();
    @Override
    public void run() {
//        Object obj = new Object();
        while(true){
            synchronized (this){//此时的this:唯一的Window1的对象   //方式二:synchronized (dog) {

                if (ticket > 0) {

                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }

                    System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket);


                    ticket--;
                } else {
                    break;
                }
            }
        }
    }
}


public class WindowTest1 {
    public static void main(String[] args) {
        Window1 w = new Window1();

        Thread t1 = new Thread(w);
        Thread t2 = new Thread(w);
        Thread t3 = new Thread(w);

        t1.setName("窗口1");
        t2.setName("窗口2");
        t3.setName("窗口3");

        t1.start();
        t2.start();
        t3.start();
    }

}


class Dog{

}
线程安全举例

 

package com.atguigu.java;

/**
 * 使用同步方法解决实现Runnable接口的线程安全问题
 *
 *
 *  关于同步方法的总结:
 *  1. 同步方法仍然涉及到同步监视器,只是不需要我们显式的声明。
 *  2. 非静态的同步方法,同步监视器是:this
 *     静态的同步方法,同步监视器是:当前类本身
 *
 */


class Window3 implements Runnable {

    private int ticket = 100;

    @Override
    public void run() {
        while (true) {

            show();
        }
    }

    private synchronized void show(){//同步监视器:this
        //synchronized (this){

            if (ticket > 0) {

                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }

                System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket);

                ticket--;
            }
        //}
    }
}


public class WindowTest3 {
    public static void main(String[] args) {
        Window3 w = new Window3();

        Thread t1 = new Thread(w);
        Thread t2 = new Thread(w);
        Thread t3 = new Thread(w);

        t1.setName("窗口1");
        t2.setName("窗口2");
        t3.setName("窗口3");

        t1.start();
        t2.start();
        t3.start();
    }

}
使用同步方法解决实现Runnable接口的线程安全问题

 

/**
 * 使用同步方法处理继承Thread类的方式中的线程安全问题
 */
class Window4 extends Thread {


    private static int ticket = 100;

    @Override
    public void run() {

        while (true) {

            show();
        }

    }
    private static synchronized void show(){//同步监视器:Window4.class
        //private synchronized void show(){ //同步监视器:t1,t2,t3。此种解决方式是错误的
        if (ticket > 0) {

            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket);
            ticket--;
        }
    }
}


public class WindowTest4 {
    public static void main(String[] args) {
        Window4 t1 = new Window4();
        Window4 t2 = new Window4();
        Window4 t3 = new Window4();


        t1.setName("窗口1");
        t2.setName("窗口2");
        t3.setName("窗口3");

        t1.start();
        t2.start();
        t3.start();

    }
}
使用同步方法处理继承Thread类的方式中的线程安全问题

 

/**
 * 使用同步机制将单例模式中的懒汉式改写为线程安全的
 */
public class BankTest {

}

class Bank{

    private Bank(){}

    private static Bank instance = null;

    public static Bank getInstance(){
        //方式一:效率稍差
//        synchronized (Bank.class) {
//            if(instance == null){
//
//                instance = new Bank();
//            }
//            return instance;
//        }
        //方式二:效率更高
        if(instance == null){

            synchronized (Bank.class) {
                if(instance == null){

                    instance = new Bank();
                }

            }
        }
        return instance;
    }

}
使用同步机制将单例模式中的懒汉式改写为线程安全的

 

 

死锁


死锁:不同的线程分别占用对方需要的同步资源不放弃,都在等待对方放弃自己需要的同步资源,就形成了线程的死锁。

 

解决方法:   专门的算法、原则   尽量减少同步资源的定义   尽量避免嵌套同步
/*
                         * 演示线程的死锁问题
                         *
                         * 1.死锁的理解:不同的线程分别占用对方需要的同步资源不放弃,
                         * 都在等待对方放弃自己需要的同步资源,就形成了线程的死锁
                         *
                         * 2.说明:
                         * 1)出现死锁后,不会出现异常,不会出现提示,只是所有的线程都处于阻塞状态,无法继续
                         * 2)我们使用同步时,要避免出现死锁。
                         *
                         */
                        public class ThreadTest {

                            public static void main(String[] args) {

                                StringBuffer s1 = new StringBuffer();
                                StringBuffer s2 = new StringBuffer();


                                new Thread(){
                                    @Override
                                    public void run() {

                                        synchronized (s1){

                                            s1.append("a");
                                            s2.append("1");

                                            try {
                                                Thread.sleep(100);
                                            } catch (InterruptedException e) {
                        e.printStackTrace();
                    }


                    synchronized (s2){
                        s1.append("b");
                        s2.append("2");

                        System.out.println(s1);
                        System.out.println(s2);
                    }


                }

            }
        }.start();


        new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (s2){

                    s1.append("c");
                    s2.append("3");

                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }

                    synchronized (s1){
                        s1.append("d");
                        s2.append("4");

                        System.out.println(s1);
                        System.out.println(s2);
                    }


                }



            }
        }).start();


    }


}
演示线程的死锁问题

 

 

解决线程安全问题的方式三:Lock(锁)


从JDK 5.0开始,Java提供了更强大的线程同步机制——通过显式定义同步锁对象来实现同步。同步锁使用Lock对象充当。
//java.util.concurrent.locks.Lock接口是控制多个线程对共享资源进行访问的工具

class A{
private final ReentrantLock lock = new ReenTrantLock();
public void m(){
lock.lock();
try{
//保证线程安全的代码; 
}
finally{
lock.unlock(); 
  } 
 } 
}
//注意:如果同步代码有异常,要将unlock()写入finally语句块

 

 

/**
 * 解决线程安全问题的方式三:Lock锁  --- JDK5.0新增
 *
 * 1. 面试题:synchronized 与 Lock的异同?
 *   相同:二者都可以解决线程安全问题
 *   不同:synchronized机制在执行完相应的同步代码以后,自动的释放同步监视器
 *        Lock需要手动的启动同步(lock()),同时结束同步也需要手动的实现(unlock())
 *
 * 2.优先使用顺序:
 * Lock  同步代码块(已经进入了方法体,分配了相应资源)  同步方法(在方法体之外)
 *
 *
 *  面试题:如何解决线程安全问题?有几种方式?
 *          同步代码块、同步方法、lock锁
 */
class Window implements Runnable{

    private int ticket = 100;
    //1.实例化ReentrantLock
    private ReentrantLock lock = new ReentrantLock();

    @Override
    public void run() {
        while(true){
            try{

                //2.调用锁定方法lock()
                lock.lock();

                if(ticket > 0){

                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }

                    System.out.println(Thread.currentThread().getName() + ":售票,票号为:" + ticket);
                    ticket--;
                }else{
                    break;
                }
            }finally {
                //3.调用解锁方法:unlock()
                lock.unlock();
            }

        }
    }
}

public class LockTest {
    public static void main(String[] args) {
        Window w = new Window();

        Thread t1 = new Thread(w);
        Thread t2 = new Thread(w);
        Thread t3 = new Thread(w);

        t1.setName("窗口1");
        t2.setName("窗口2");
        t3.setName("窗口3");

        t1.start();
        t2.start();
        t3.start();
    }
}
解决线程安全问题的方式三:Lock锁

 

synchronized 与 Lock 的对比 1. Lock是显式锁(手动开启和关闭锁,别忘记关闭锁),synchronized是隐式锁,出了作用域自动释放 2. Lock只有代码块锁,synchronized有代码块锁和方法锁 3. 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多的子类) 优先使用顺序: Lock --> 同步代码块(已经进入了方法体,分配了相应资源)---> 同步方法(在方法体之外)

线程的通信
一、wait() 与 notify() 和 notifyAll() 1.  wait():令当前线程挂起并放弃CPU、同步资源并等待,使别的线程可访问并修改共享资源,而当前线程排队等候其他线程调用notify()或notifyAll()方法唤醒,唤醒后等待重新获得对监视器的所有权后才能继续执行。 2.  notify():唤醒正在排队等待同步资源的线程中优先级最高者结束等待 3.  notifyAll ():唤醒正在排队等待资源的所有线程结束等待. 这三个方法只有在synchronized方法或synchronized代码块中才能使用,否则会报java.lang.IllegalMonitorStateException异常。 因为这三个方法必须有锁对象调用,而任意对象都可以作为synchronized的同步锁,因此这三个方法只能在Object类中声明。

wait() 方法
  在当前线程中调用方法: 对象名.wait()
  使当前线程进入等待(某对象)状态 ,直到另一线程对该对象发出 notify(或notifyAll) 为止。
  调用方法的必要条件:当前线程必须具有对该对象的监控权(加锁)
  调用此方法后,当前线程将释放对象监控权 ,然后进入等待
  在当前线程被notify后,要重新获得监控权,然后从断点处继续代码的执行。

notify()/notifyAll()
  在当前线程中调用方法: 对象名.notify()
  功能:唤醒等待该对象监控权的一个/所有线程。
  调用方法的必要条件:当前线程必须具有对该对象的监控权(加锁)



/**
 * 线程通信的例子:使用两个线程打印 1-100。线程1, 线程2 交替打印
 *
 * 涉及到的三个方法:
 * wait():一旦执行此方法,当前线程就进入阻塞状态,并释放同步监视器。
 * notify():一旦执行此方法,就会唤醒被wait的一个线程。如果有多个线程被wait,就唤醒优先级高的那个。
 * notifyAll():一旦执行此方法,就会唤醒所有被wait的线程。
 *
 * 说明:
 * 1.wait(),notify(),notifyAll()三个方法必须使用在同步代码块或同步方法中。
 * 2.wait(),notify(),notifyAll()三个方法的调用者必须是同步代码块或同步方法中的同步监视器。
 *    否则,会出现IllegalMonitorStateException异常
 * 3.wait(),notify(),notifyAll()三个方法是定义在java.lang.Object类中。
 *
 * 面试题:sleep() 和 wait()的异同?
 * 1.相同点:一旦执行方法,都可以使得当前的线程进入阻塞状态。
 * 2.不同点:1)两个方法声明的位置不同:Thread类中声明sleep() , Object类中声明wait()
 *          2)调用的要求不同:sleep()可以在任何需要的场景下调用。 wait()必须使用在同步代码块或同步方法中
 *          3)关于是否释放同步监视器:如果两个方法都使用在同步代码块或同步方法中,sleep()不会释放锁,wait()会释放锁。
 */
class Number implements Runnable{
    private int number = 1;
    private Object obj = new Object();
    @Override
    public void run() {

        while(true){

            synchronized (obj) {

                obj.notify();

                if(number <= 100){

                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }

                    System.out.println(Thread.currentThread().getName() + ":" + number);
                    number++;

                    try {
                        //使得调用如下wait()方法的线程进入阻塞状态
                        obj.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }

                }else{
                    break;
                }
            }

        }

    }
}


public class CommunicationTest {
    public static void main(String[] args) {
        Number number = new Number();
        Thread t1 = new Thread(number);
        Thread t2 = new Thread(number);

        t1.setName("线程1");
        t2.setName("线程2");

        t1.start();
        t2.start();
    }
}
线程通信的例子+面试题

 


JDK5.0新增线程创建方式
新增方式一:实现Callable接口   与使用Runnable相比, Callable功能更强大些     相比run()方法,可以有返回值     方法可以抛出异常     支持泛型的返回值     需要借助FutureTask类,比如获取返回结果

 Future接口
  可以对具体Runnable、Callable任务的执行结果进行取消、查询是否完成、获取结果等。
  FutrueTask是Futrue接口的唯一的实现类
  FutureTask 同时实现了Runnable, Future接口。它既可以作为Runnable被线程执行,又可以作为Future得到Callable的返回值

新增方式二:使用线程池

JDK 5.0起提供了线程池相关API:ExecutorService 和 Executors   ExecutorService:真正的线程池接口。常见子类ThreadPoolExecutor   void execute(Runnable command) :执行任务/命令,没有返回值,一般用来执行Runnable   <T> Future<T> submit(Callable<T> task):执行任务,有返回值,一般又来执行Callable    void shutdown() :关闭连接池 Executors:工具类、线程池的工厂类,用于创建并返回不同类型的线程池 Executors.newCachedThreadPool():创建一个可根据需要创建新线程的线程池 Executors.newFixedThreadPool(n); 创建一个可重用固定线程数的线程池 Executors.newSingleThreadExecutor() :创建一个只有一个线程的线程池 Executors.newScheduledThreadPool(n):创建一个线程池,它可安排在给定延迟后运行命令或者定期地执行。










这篇关于Java多线程的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!