重点部分:线程的创建与使用、线程的同步
基本概念:程序、进程、线程
多线程的创建与使用
一、Thread类
构造器 Thread()://创建新的Thread对象 Thread(String threadname)://创建线程并指定线程实例名 Thread(Runnable target)://指定创建线程的目标对象,它实现了Runnable接口中的run方法 Thread(Runnable target, String name)://创建新的Thread对象
二、API中创建线程的两种方式
JDK1.5之前创建新执行线程有两种方法:继承Thread类的方式 实现Runnable接口的方式 方式一:继承Thread类 1) 定义子类继承Thread类。 2) 子类中重写Thread类中的run方法。 3) 创建Thread子类对象,即创建了线程对象。 4) 调用线程对象start方法:启动线程,调用run方法。/** * 多线程的创建,方式一:继承于Thread类 * 1. 创建一个继承于Thread类的子类 * 2. 重写Thread类的run() --> 将此线程执行的操作声明在run()中 * 3. 创建Thread类的子类的对象 * 4. 通过此对象调用start() * <p> * 例子:遍历100以内的所有的偶数 * */ //1. 创建一个继承于Thread类的子类 class MyThread extends Thread { //2. 重写Thread类的run() @Override public void run() { for (int i = 0; i < 100; i++) { if(i % 2 == 0){ System.out.println(Thread.currentThread().getName() + ":" + i); } } } } public class ThreadTest { public static void main(String[] args) { //3. 创建Thread类的子类的对象 MyThread t1 = new MyThread(); //4.通过此对象调用start():①启动当前线程 ② 调用当前线程的run() t1.start(); //问题一:我们不能通过直接调用run()的方式启动线程。用run的时候,只会启动一个线程(main主线程),只是体现了方法的调用,而不是多线程 // t1.run(); //问题二:再启动一个线程,遍历100以内的偶数。不可以还让已经start()的线程去执行。会报IllegalThreadStateException // t1.start(); //我们需要重新创建一个线程的对象 MyThread t2 = new MyThread(); t2.start(); //如下操作仍然是在main线程中执行的。 for (int i = 0; i < 100; i++) { if(i % 2 == 0){ System.out.println(Thread.currentThread().getName() + ":" + i + "***********main()************"); } } } }多线程的创建,方式一:继承于Thread类
方式二:实现Runnable接口 1) 定义子类,实现Runnable接口。 2) 子类中重写Runnable接口中的run方法。 3) 通过Thread类含参构造器创建线程对象。 4) 将Runnable接口的子类对象作为实际参数传递给Thread类的构造器中。 5) 调用Thread类的start方法:开启线程,调用Runnable子类接口的run方法。
/* * 创建多线程的方式二:实现Runnable接口 * 1. 创建一个实现了Runnable接口的类 * 2. 实现类去实现Runnable中的抽象方法:run() * 3. 创建实现类的对象 * 4. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象 * 5. 通过Thread类的对象调用start() * * * 比较创建线程的两种方式。 * 开发中:优先选择:实现Runnable接口的方式 * 原因:1. 实现的方式没有类的单继承性的局限性 * 2. 实现的方式更适合来处理多个线程有共享数据的情况。 * * 联系:public class Thread implements Runnable * 相同点:两种方式都需要重写run(),将创建线程要执行的逻辑声明在run()中。 */ //1. 创建一个实现了Runnable接口的类 class MThread implements Runnable{ //2. 实现类去实现Runnable中的抽象方法:run() @Override public void run() { for (int i = 0; i < 100; i++) { if(i % 2 == 0){ System.out.println(Thread.currentThread().getName() + ":" + i); } } } } public class ThreadTest1 { public static void main(String[] args) { //3. 创建实现类的对象 MThread mThread = new MThread(); //4. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象 Thread t1 = new Thread(mThread); t1.setName("线程1"); //5. 通过Thread类的对象调用start():① 启动线程 ②调用当前线程的run()-->调用了Runnable类型的target的run() t1.start(); //再启动一个线程,遍历100以内的偶数 Thread t2 = new Thread(mThread); t2.setName("线程2"); t2.start(); } }创建多线程的方式二:实现Runnable接口
public class ThreadDemo { public static void main(String[] args) { // MyThread1 m1 = new MyThread1(); // MyThread2 m2 = new MyThread2(); // // m1.start(); // m2.start(); //创建Thread类的匿名子类的方式 new Thread(){ @Override public void run() { for (int i = 0; i < 100; i++) { if(i % 2 == 0){ System.out.println(Thread.currentThread().getName() + ":" + i); } } } }.start(); new Thread(){ @Override public void run() { for (int i = 0; i < 100; i++) { if(i % 2 != 0){ System.out.println(Thread.currentThread().getName() + ":" + i); } } } }.start(); } } class MyThread1 extends Thread{ @Override public void run() { for (int i = 0; i < 100; i++) { if(i % 2 == 0){ System.out.println(Thread.currentThread().getName() + ":" + i); } } } } class MyThread2 extends Thread{ @Override public void run() { for (int i = 0; i < 100; i++) { if(i % 2 != 0){ System.out.println(Thread.currentThread().getName() + ":" + i); } } } }练习—创建Thread类的匿名子类的方式
三、继承方式和实现方式的联系与区别
1. 区别
继承Thread:线程代码存放Thread子类run方法中。 实现Runnable:线程代码存在接口的子类的run方法。 2. 实现方式的好处:避免了单继承的局限性 多个线程可以共享同一个接口实现类的对象,非常适合多个相同线程来处理同一份资源。Thread中的常用方法
测试Thread中的常用方法:
1. start():启动当前线程;调用当前线程的run() 2. run(): 通常需要重写Thread类中的此方法,将创建的线程要执行的操作声明在此方法中 3. currentThread():静态方法,返回执行当前代码的线程 4. getName():获取当前线程的名字 5. setName():设置当前线程的名字 6. yield():释放当前cpu的执行权 7. join():在线程a中调用线程b的join(),此时线程a就进入阻塞状态,直到线程b完全执行完以后,线程a才结束阻塞状态。 8. stop():已过时。当执行此方法时,强制结束当前线程。 9. sleep(long millitime):让当前线程“睡眠”指定的millitime毫秒。在指定的millitime毫秒时间内,当前线程是阻塞状态。 10. isAlive():判断当前线程是否存活
线程的优先级: 1. MAX_PRIORITY:10 MIN _PRIORITY:1 NORM_PRIORITY:5 -->默认优先级 2.如何获取和设置当前线程的优先级: getPriority():获取线程的优先级 setPriority(int p):设置线程的优先级 说明:高优先级的线程要抢占低优先级线程cpu的执行权。但是只是从概率上讲,高优先级的线程高概率的情况下被执行。并不意味着只有当高优先级的线程执行完以后,低优先级的线程才执行。
class HelloThread extends Thread{ @Override public void run() { for (int i = 0; i < 100; i++) { if(i % 2 == 0){ // try { // sleep(10); // } catch (InterruptedException e) { // e.printStackTrace(); // } System.out.println(Thread.currentThread().getName() + ":" + Thread.currentThread().getPriority() + ":" + i); } // if(i % 20 == 0){ // yield(); // } } } public HelloThread(String name){ super(name); } } public class ThreadMethodTest { public static void main(String[] args) { HelloThread h1 = new HelloThread("Thread:1"); // h1.setName("线程一"); //设置分线程的优先级 h1.setPriority(Thread.MAX_PRIORITY); h1.start(); //给主线程命名 Thread.currentThread().setName("主线程"); Thread.currentThread().setPriority(Thread.MIN_PRIORITY); for (int i = 0; i < 100; i++) { if(i % 2 == 0){ System.out.println(Thread.currentThread().getName() + ":" + Thread.currentThread().getPriority() + ":" + i); } // if(i == 20){ // try { // h1.join(); // } catch (InterruptedException e) { // e.printStackTrace(); // } // } } // System.out.println(h1.isAlive()); } }方法的使用
线程的生命周期
线程的同步
在Java中,我们通过同步机制,来解决线程的安全问题。 方式一: 同步代码块:
//1. 同步代码块: synchronized (对象){ // 需要被同步的代码; } //2. synchronized还可以放在方法声明中,表示整个方法为同步方法。 例如: public synchronized void show (String name){ …. }
说明:1.操作共享数据的代码,即为需要被同步的代码。 -->不能包含代码多了,也不能包含代码少了。 2.共享数据:多个线程共同操作的变量。比如:ticket就是共享数据。 3.同步监视器,俗称:锁。任何一个类的对象,都可以充当锁。 要求:多个线程必须要共用同一把锁。 补充:在实现Runnable接口创建多线程的方式中,我们可以考虑使用this充当同步监视器。但是慎用。 方式二:同步方法。 如果操作共享数据的代码完整的声明在一个方法中,我们不妨将此方法声明同步的。 5.同步的方式,解决了线程的安全问题。---好处 操作同步代码时,只能有一个线程参与,其他线程等待。相当于是一个单线程的过程,效率低。 ---局限性
/** * 例子:创建三个窗口卖票,总票数为100张.使用实现Runnable接口的方式 * * 1.问题:卖票过程中,出现了重票、错票 -->出现了线程的安全问题 * 2.问题出现的原因:当某个线程操作车票的过程中,尚未操作完成时,其他线程参与进来,也操作车票。 * 3.如何解决:当一个线程a在操作ticket的时候,其他线程不能参与进来。直到线程a操作完ticket时,其他 * 线程才可以开始操作ticket。这种情况即使线程a出现了阻塞,也不能被改变。 * */ class Window1 implements Runnable{ private int ticket = 100; // Object obj = new Object(); // Dog dog = new Dog(); @Override public void run() { // Object obj = new Object(); while(true){ synchronized (this){//此时的this:唯一的Window1的对象 //方式二:synchronized (dog) { if (ticket > 0) { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket); ticket--; } else { break; } } } } } public class WindowTest1 { public static void main(String[] args) { Window1 w = new Window1(); Thread t1 = new Thread(w); Thread t2 = new Thread(w); Thread t3 = new Thread(w); t1.setName("窗口1"); t2.setName("窗口2"); t3.setName("窗口3"); t1.start(); t2.start(); t3.start(); } } class Dog{ }线程安全举例
package com.atguigu.java; /** * 使用同步方法解决实现Runnable接口的线程安全问题 * * * 关于同步方法的总结: * 1. 同步方法仍然涉及到同步监视器,只是不需要我们显式的声明。 * 2. 非静态的同步方法,同步监视器是:this * 静态的同步方法,同步监视器是:当前类本身 * */ class Window3 implements Runnable { private int ticket = 100; @Override public void run() { while (true) { show(); } } private synchronized void show(){//同步监视器:this //synchronized (this){ if (ticket > 0) { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket); ticket--; } //} } } public class WindowTest3 { public static void main(String[] args) { Window3 w = new Window3(); Thread t1 = new Thread(w); Thread t2 = new Thread(w); Thread t3 = new Thread(w); t1.setName("窗口1"); t2.setName("窗口2"); t3.setName("窗口3"); t1.start(); t2.start(); t3.start(); } }使用同步方法解决实现Runnable接口的线程安全问题
/** * 使用同步方法处理继承Thread类的方式中的线程安全问题 */ class Window4 extends Thread { private static int ticket = 100; @Override public void run() { while (true) { show(); } } private static synchronized void show(){//同步监视器:Window4.class //private synchronized void show(){ //同步监视器:t1,t2,t3。此种解决方式是错误的 if (ticket > 0) { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket); ticket--; } } } public class WindowTest4 { public static void main(String[] args) { Window4 t1 = new Window4(); Window4 t2 = new Window4(); Window4 t3 = new Window4(); t1.setName("窗口1"); t2.setName("窗口2"); t3.setName("窗口3"); t1.start(); t2.start(); t3.start(); } }使用同步方法处理继承Thread类的方式中的线程安全问题
/** * 使用同步机制将单例模式中的懒汉式改写为线程安全的 */ public class BankTest { } class Bank{ private Bank(){} private static Bank instance = null; public static Bank getInstance(){ //方式一:效率稍差 // synchronized (Bank.class) { // if(instance == null){ // // instance = new Bank(); // } // return instance; // } //方式二:效率更高 if(instance == null){ synchronized (Bank.class) { if(instance == null){ instance = new Bank(); } } } return instance; } }使用同步机制将单例模式中的懒汉式改写为线程安全的
死锁
死锁:不同的线程分别占用对方需要的同步资源不放弃,都在等待对方放弃自己需要的同步资源,就形成了线程的死锁。
解决方法: 专门的算法、原则 尽量减少同步资源的定义 尽量避免嵌套同步
/* * 演示线程的死锁问题 * * 1.死锁的理解:不同的线程分别占用对方需要的同步资源不放弃, * 都在等待对方放弃自己需要的同步资源,就形成了线程的死锁 * * 2.说明: * 1)出现死锁后,不会出现异常,不会出现提示,只是所有的线程都处于阻塞状态,无法继续 * 2)我们使用同步时,要避免出现死锁。 * */ public class ThreadTest { public static void main(String[] args) { StringBuffer s1 = new StringBuffer(); StringBuffer s2 = new StringBuffer(); new Thread(){ @Override public void run() { synchronized (s1){ s1.append("a"); s2.append("1"); try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } synchronized (s2){ s1.append("b"); s2.append("2"); System.out.println(s1); System.out.println(s2); } } } }.start(); new Thread(new Runnable() { @Override public void run() { synchronized (s2){ s1.append("c"); s2.append("3"); try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } synchronized (s1){ s1.append("d"); s2.append("4"); System.out.println(s1); System.out.println(s2); } } } }).start(); } }演示线程的死锁问题
解决线程安全问题的方式三:Lock(锁)
//java.util.concurrent.locks.Lock接口是控制多个线程对共享资源进行访问的工具 class A{ private final ReentrantLock lock = new ReenTrantLock(); public void m(){ lock.lock(); try{ //保证线程安全的代码; } finally{ lock.unlock(); } } } //注意:如果同步代码有异常,要将unlock()写入finally语句块
/** * 解决线程安全问题的方式三:Lock锁 --- JDK5.0新增 * * 1. 面试题:synchronized 与 Lock的异同? * 相同:二者都可以解决线程安全问题 * 不同:synchronized机制在执行完相应的同步代码以后,自动的释放同步监视器 * Lock需要手动的启动同步(lock()),同时结束同步也需要手动的实现(unlock()) * * 2.优先使用顺序: * Lock 同步代码块(已经进入了方法体,分配了相应资源) 同步方法(在方法体之外) * * * 面试题:如何解决线程安全问题?有几种方式? * 同步代码块、同步方法、lock锁 */ class Window implements Runnable{ private int ticket = 100; //1.实例化ReentrantLock private ReentrantLock lock = new ReentrantLock(); @Override public void run() { while(true){ try{ //2.调用锁定方法lock() lock.lock(); if(ticket > 0){ try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + ":售票,票号为:" + ticket); ticket--; }else{ break; } }finally { //3.调用解锁方法:unlock() lock.unlock(); } } } } public class LockTest { public static void main(String[] args) { Window w = new Window(); Thread t1 = new Thread(w); Thread t2 = new Thread(w); Thread t3 = new Thread(w); t1.setName("窗口1"); t2.setName("窗口2"); t3.setName("窗口3"); t1.start(); t2.start(); t3.start(); } }解决线程安全问题的方式三:Lock锁
synchronized 与 Lock 的对比 1. Lock是显式锁(手动开启和关闭锁,别忘记关闭锁),synchronized是隐式锁,出了作用域自动释放 2. Lock只有代码块锁,synchronized有代码块锁和方法锁 3. 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多的子类) 优先使用顺序: Lock --> 同步代码块(已经进入了方法体,分配了相应资源)---> 同步方法(在方法体之外)
线程的通信
/** * 线程通信的例子:使用两个线程打印 1-100。线程1, 线程2 交替打印 * * 涉及到的三个方法: * wait():一旦执行此方法,当前线程就进入阻塞状态,并释放同步监视器。 * notify():一旦执行此方法,就会唤醒被wait的一个线程。如果有多个线程被wait,就唤醒优先级高的那个。 * notifyAll():一旦执行此方法,就会唤醒所有被wait的线程。 * * 说明: * 1.wait(),notify(),notifyAll()三个方法必须使用在同步代码块或同步方法中。 * 2.wait(),notify(),notifyAll()三个方法的调用者必须是同步代码块或同步方法中的同步监视器。 * 否则,会出现IllegalMonitorStateException异常 * 3.wait(),notify(),notifyAll()三个方法是定义在java.lang.Object类中。 * * 面试题:sleep() 和 wait()的异同? * 1.相同点:一旦执行方法,都可以使得当前的线程进入阻塞状态。 * 2.不同点:1)两个方法声明的位置不同:Thread类中声明sleep() , Object类中声明wait() * 2)调用的要求不同:sleep()可以在任何需要的场景下调用。 wait()必须使用在同步代码块或同步方法中 * 3)关于是否释放同步监视器:如果两个方法都使用在同步代码块或同步方法中,sleep()不会释放锁,wait()会释放锁。 */ class Number implements Runnable{ private int number = 1; private Object obj = new Object(); @Override public void run() { while(true){ synchronized (obj) { obj.notify(); if(number <= 100){ try { Thread.sleep(10); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + ":" + number); number++; try { //使得调用如下wait()方法的线程进入阻塞状态 obj.wait(); } catch (InterruptedException e) { e.printStackTrace(); } }else{ break; } } } } } public class CommunicationTest { public static void main(String[] args) { Number number = new Number(); Thread t1 = new Thread(number); Thread t2 = new Thread(number); t1.setName("线程1"); t2.setName("线程2"); t1.start(); t2.start(); } }线程通信的例子+面试题
JDK5.0新增线程创建方式
新增方式二:使用线程池