为什么要重写hashcode方法和equals方法
我们可能经常听到说重写equals方法必须重写hashcode方法,这是为什么呢?java中所有的类都是Object的子类,直接上object源码
/* * Copyright (c) 1994, 2012, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * */ package java.lang; /** * Class {@code Object} is the root of the class hierarchy. * Every class has {@code Object} as a superclass. All objects, * including arrays, implement the methods of this class. * * @author unascribed * @see java.lang.Class * @since JDK1.0 */ public class Object { private static native void registerNatives(); static { registerNatives(); } public final native Class<?> getClass(); public native int hashCode(); public boolean equals(Object obj) { return (this == obj); } protected native Object clone() throws CloneNotSupportedException; public String toString() { return getClass().getName() + "@" + Integer.toHexString(hashCode()); } public final native void notify(); public final native void notifyAll(); public final native void wait(long timeout) throws InterruptedException; public final void wait(long timeout, int nanos) throws InterruptedException { if (timeout < 0) { throw new IllegalArgumentException("timeout value is negative"); } if (nanos < 0 || nanos > 999999) { throw new IllegalArgumentException( "nanosecond timeout value out of range"); } if (nanos > 0) { timeout++; } wait(timeout); } public final void wait() throws InterruptedException { wait(0); } protected void finalize() throws Throwable { } }<br><br>
首先来复习下hash算法和hashmap#
在一个长度为n(假设是10000)的线性表(假设是ArrayList)里,存放着无序的数字;如果我们要找一个指定的数字,就不得不通过从头到尾依次遍历来查找,这样的平均查找次数是n除以2(这里是5000)。
我们再来观察Hash表(这里的Hash表纯粹是数据结构上的概念,和Java无关)。它的平均查找次数接近于1,代价相当小,关键是在Hash表里,存放在其中的数据和它的存储位置是用Hash函数关联的。
我们假设一个Hash函数是x*x%5。当然实际情况里不可能用这么简单的Hash函数,我们这里纯粹为了说明方便,而Hash表是一个长度是11的线性表。如果我们要把6放入其中,那么我们首先会对6用Hash函数计算一下,结果是1,所以我们就把6放入到索引号是1这个位置。同样如果我们要放数字7,经过Hash函数计算,7的结果是4,那么它将被放入索引是4的这个位置。这个效果如下图所示。
这样做的好处非常明显。比如我们要从中找6这个元素,我们可以先通过Hash函数计算6的索引位置,然后直接从1号索引里找到它了。
不过我们会遇到“Hash值冲突”这个问题。比如经过Hash函数计算后,7和8会有相同的Hash值,对此Java的HashMap对象采用的是”链地址法“的解决方案。效果如下图所示。
具体的做法是,为所有Hash值是i的对象建立一个同义词链表。假设我们在放入8的时候,发现4号位置已经被占,那么就会新建一个链表结点放入8。同样,如果我们要找8,那么发现4号索引里不是8,那会沿着链表依次查找。
虽然我们还是无法彻底避免Hash值冲突的问题,但是Hash函数设计合理,仍能保证同义词链表的长度被控制在一个合理的范围里。这里讲的理论知识并非无的放矢,大家能在后文里清晰地了解到重写hashCode方法的重要性。
举一个简单例子#
当我们用HashMap存入自定义的类时,如果不重写这个自定义类的equals和hashCode方法,得到的结果会和我们预期的不一样。我们来看WithoutHashCode.java这个例子。
在其中的第2到第18行,我们定义了一个Key类;在其中的第3行定义了唯一的一个属性id。当前我们先注释掉第9行的equals方法和第16行的hashCode方法。
1 import java.util.HashMap; 2 class Key { 3 private Integer id; 4 public Integer getId() 5 {return id; } 6 public Key(Integer id) 7 {this.id = id; } 8 //故意先注释掉equals和hashCode方法 9 // public boolean equals(Object o) { 10 // if (o == null || !(o instanceof Key)) 11 // { return false; } 12 // else 13 // { return this.getId().equals(((Key) o).getId());} 14 // } 15 16 // public int hashCode() 17 // { return id.hashCode(); } 18 } 19 20 public class WithoutHashCode { 21 public static void main(String[] args) { 22 Key k1 = new Key(1); 23 Key k2 = new Key(1); 24 HashMap<Key,String> hm = new HashMap<Key,String>(); 25 hm.put(k1, "Key with id is 1"); 26 System.out.println(hm.get(k2)); 27 } 28 }
在main函数里的第22和23行,我们定义了两个Key对象,它们的id都是1,就好比它们是两把相同的都能打开同一扇门的钥匙。
在第24行里,我们通过泛型创建了一个HashMap对象。它的键部分可以存放Key类型的对象,值部分可以存储String类型的对象。
在第25行里,我们通过put方法把k1和一串字符放入到hm里;
而在第26行,我们想用k2去从HashMap里得到值;这就好比我们想用k1这把钥匙来锁门,用k2来开门。这是符合逻辑的,但从当前结果看,26行的返回结果不是我们想象中的那个字符串,而是null。
原因有两个—没有重写。第一是没有重写hashCode方法,第二是没有重写equals方法。
当我们往HashMap里放k1时,首先会调用Key这个类的hashCode方法计算它的hash值,随后把k1放入hash值所指引的内存位置。
关键是我们没有在Key里定义hashCode方法。这里调用的仍是Object类的hashCode方法(所有的类都是Object的子类),而Object类的hashCode方法返回的hash值其实是k1对象的内存地址(假设是1000)。
如果我们随后是调用hm.get(k1),那么我们会再次调用hashCode方法(还是返回k1的地址1000),随后根据得到的hash值,能很快地找到k1。
但我们这里的代码是hm.get(k2),当我们调用Object类的hashCode方法(因为Key里没定义)计算k2的hash值时,其实得到的是k2的内存地址(假设是2000)。由于k1和k2是两个不同的对象,所以它们的内存地址一定不会相同,也就是说它们的hash值一定不同,这就是我们无法用k2的hash值去拿k1的原因。
当我们把第16和17行的hashCode方法的注释去掉后,会发现它是返回id属性的hashCode值,这里k1和k2的id都是1,所以它们的hash值是相等的。
我们再来更正一下存k1和取k2的动作。存k1时,是根据它id的hash值,假设这里是100,把k1对象放入到对应的位置。而取k2时,是先计算它的hash值(由于k2的id也是1,这个值也是100),随后到这个位置去找。
但结果会出乎我们意料:明明100号位置已经有k1,但第26行的输出结果依然是null。其原因就是没有重写Key对象的equals方法。
HashMap是用链地址法来处理冲突,也就是说,在100号位置上,有可能存在着多个用链表形式存储的对象。它们通过hashCode方法返回的hash值都是100。
当我们通过k2的hashCode到100号位置查找时,确实会得到k1。但k1有可能仅仅是和k2具有相同的hash值,但未必和k2相等(k1和k2两把钥匙未必能开同一扇门),这个时候,就需要调用Key对象的equals方法来判断两者是否相等了。
由于我们在Key对象里没有定义equals方法,系统就不得不调用Object类的equals方法。由于Object的固有方法是根据两个对象的内存地址来判断,所以k1和k2一定不会相等,这就是为什么依然在26行通过hm.get(k2)依然得到null的原因。
为什么重写equals方法一般必须重写hashcode方法#
@Override public int hashCode() { return Integer.hashCode(value); } public static int hashCode(int value) { return value; } public boolean equals(Object obj) { if (obj instanceof Integer) { return value == ((Integer)obj).intValue(); } return false; }
如Integer类中equals方法和hashcode方法均被重写,Integer类中的hashcode方法就是返回它本身的值,equals方法比较的是它本身的值是否相等。
而equals方法必须要满足以下几个特性
1.自反性:x.equals(x) == true,自己和自己比较相等
2.对称性:x.equals(y) == y.equals(x),两个对象调用equals的的结果应该一样
3.传递性:如果x.equals(y) == true y.equals(z) == true 则 x.equals(z) == true,x和y相等,y和z相等,则x和z相等
4.一致性 : 如果x对象和y对象有成员变量num1和num2,其中重写的equals方法只有num1参加了运算,则修改num2不影响x.equals(y)的值
而这时如果某个类没有重写hashcode方法的话,equals判断两个值相等,但是hashcode的值不相等,如String类,这样就会造成歧义
总结:
第一点:
当类中没有重写HashCode方法,那么就会调用Object类的hashCode方法(所有的类都是Object的子类)),而Object类的hashCode方法返回的hash值其实是k1对象的内存地址(假设是1000)。
因为new出来的两个Key对象的内存地址不一样,所以也就无法找到相同下表位置下的数据。
第二点:
由于我们在Key对象里没有定义equals方法,系统就不得不调用Object类的equals方法。由于Object的固有方法是根据两个对象的内存地址来判断,所以k1和k2一定不会相等,这就是为什么依然在26行通过hm.get(k2)依然得到null的原因。
从上面两点中可以再HashMap源码中找到为什么要重写的依据:
第一点:
这里的key就是传入的Key对象,然后key.hashCode()也就是调用的Key类中的HashCode方法,因此两个对象id的hashCode是一致的,能够通过key2找到数据。
如果Key类没有重写HashCode,那么就会调用Object类中的HashCode方法,内存地址。因此就会造成下标位置中找不到数据。
第二点:
这里的key,也是传入的Key创建的对象,调用的是Key类中重写的equals对象。然后进行对比。
如果Key类没有重写equals()方法,那么就会比较对象的引用地址是否相等,因为是new 出来的两个对象,所以内存地址肯定不相等。
到目前为止,所以为什么要重写HashCode和equals方法总结完毕。
参考文章:https://www.cnblogs.com/xpang0/p/10642456.html
参考文章:https://www.cnblogs.com/xpang0/p/10642456.html
参考文章:https://www.cnblogs.com/xpang0/p/10642456.html