最短路径算法
algorithm description
time complexity: O(|V|2)
void dijkstra(int[][] graph, int source) { int[] distance = new int[V]; Boolean[] finished = new Boolean[V]; for (int i = 0; i < V; i++) { distance[i] = Integer.MAX_VALUE; finished[i] = false; } distance[source] = 0; //v-1个node for (int count = 0; count < V-1; count++) { int u = minDistance(distance, finished); finished[u] = true; for (int v = 0; v < V; v++) if (!finished[v] && graph[u][v]!=0 && distance[u] != Integer.MAX_VALUE && distance[u]+graph[u][v] < distance[v]) distance[v] = distance[u] + graph[u][v]; } } int minDistance(int[] distance, Boolean[] finished) { int min = Integer.MAX_VALUE, min_index=-1; for (int v = 0; v < V; v++) { if (!finished[v] && distance[v] <= min) { min = distance[v]; min_index = v; } } return min_index; }
Floyd–Warshall algorithm is an algorithm based on Dynamic Programming for finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles).
The Floyd–Warshall algorithm compares all possible paths through the graph between each pair of vertices.
Find shortest possible path from i
to j
using vertices only from the set {1, 2, ..., k}
as intermediate points along the way.
time complexity: O(|V|3)
core code is pretty simple
for (int k = 0; k < n; ++k) for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) { if(A[i][j]>A[i][k]+A[j][k]){ A[i][j]=A[i][k]+A[j][k]; path[i][j]=k; } }