1.卷积:提取特征
2.卷积神经网络可以分为两个大的部分:提取特征、分类
3.卷积的步长:卷积核走一步的距离
4.
5.卷积操作:其实是把一张大图片分解成好多个小部分,然后依次对这些小部分进行识别
6.最大池化、均值池化
池化层的作用:卷积操作产生了太多的数据,如果没有pooling对这些数据进行压缩,那么网络的运算就会非常的巨大,而且数据参数过于冗余就非常容易导致过度拟合。
7.激活函数的作用是神经网络设计的一个核心单元,激活函数的作用是为了在神经网络中加入非线性
8.softmax用于多分类过程中,它将多个神经元的输出,映射到0.,1区间,可以看成概率来理解,从而来进行多分类
11.
12.