见官方题解,先考虑朴素dp,然后在基础上前缀和优化。
时间复杂度: O ( n m ) O(nm) O(nm)
// Problem: D - Between Two Arrays // Contest: AtCoder - Exawizards Programming Contest 2021(AtCoder Beginner Contest 222) // URL: https://atcoder.jp/contests/abc222/tasks/abc222_d // Memory Limit: 1024 MB // Time Limit: 2000 ms // Date: 2021-10-12 21:45:04 // --------by Herio-------- #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned long long ull; const int N=3e3+5,M=2e4+5,inf=0x3f3f3f3f,mod=998244353; #define mst(a,b) memset(a,b,sizeof a) #define PII pair<int,int> #define PLL pair<ll,ll> #define x first #define y second #define pb emplace_back #define SZ(a) (int)a.size() #define rep(i,a,b) for(int i=a;i<=b;++i) #define per(i,a,b) for(int i=a;i>=b;--i) #define IOS ios::sync_with_stdio(false),cin.tie(nullptr) void Print(int *a,int n){ for(int i=1;i<n;i++) printf("%d ",a[i]); printf("%d\n",a[n]); } int f[N][N],n; int a[N],b[N]; int main(){ int mx=3e3; scanf("%d",&n); rep(i,1,n) scanf("%d",&a[i]); rep(i,1,n) scanf("%d",&b[i]); rep(i,0,mx) f[0][i]=1; rep(i,1,n){ rep(j,a[i],b[i]) f[i][j]=f[i-1][j]; //f[i-1][j]=dp[i][j] rep(j,1,mx) f[i][j]=(f[i][j]+f[i][j-1])%mod; } printf("%d\n",f[n][mx]); return 0; }