本文主要是介绍【程序】yolo v3 :loss,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
import cv2
from random import shuffle
import numpy as np
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from PIL import Image
# torch.set_printoptions(profile="full")
def bbox_iou(box1, box2, x1y1x2y2=True):
"""
计算IOU
"""
if not x1y1x2y2:
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
else:
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
inter_rect_x1 = torch.max(b1_x1, b2_x1)
inter_rect_y1 = torch.max(b1_y1, b2_y1)
inter_rect_x2 = torch.min(b1_x2, b2_x2)
inter_rect_y2 = torch.min(b1_y2, b2_y2)
inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * \
torch.clamp(inter_rect_y2 - inter_rect_y1 + 1, min=0)
b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)
iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)
return iou
def jaccard(_box_a, _box_b):
b1_x1, b1_x2 = _box_a[:, 0] - _box_a[:, 2] / 2, _box_a[:, 0] + _box_a[:, 2] / 2
b1_y1, b1_y2 = _box_a[:, 1] - _box_a[:, 3] / 2, _box_a[:, 1] + _box_a[:, 3] / 2
b2_x1, b2_x2 = _box_b[:, 0] - _box_b[:, 2] / 2, _box_b[:, 0] + _box_b[:, 2] / 2
b2_y1, b2_y2 = _box_b[:, 1] - _box_b[:, 3] / 2, _box_b[:, 1] + _box_b[:, 3] / 2
box_a = torch.zeros_like(_box_a)
box_b = torch.zeros_like(_box_b)
box_a[:, 0], box_a[:, 1], box_a[:, 2], box_a[:, 3] = b1_x1, b1_y1, b1_x2, b1_y2
box_b[:, 0], box_b[:, 1], box_b[:, 2], box_b[:, 3] = b2_x1, b2_y1, b2_x2, b2_y2
A = box_a.size(0)
B = box_b.size(0)
max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
box_b[:, :2].unsqueeze(0).expand(A, B, 2))
inter = torch.clamp((max_xy - min_xy), min=0)
inter = inter[:, :, 0] * inter[:, :, 1]
# 计算先验框和真实框各自的面积
area_a = ((box_a[:, 2] - box_a[:, 0]) *
(box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
area_b = ((box_b[:, 2] - box_b[:, 0]) *
(box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
# 求IOU
union = area_a + area_b - inter
return inter / union # [A,B]
def clip_by_tensor(t, t_min, t_max):
t = t.float()
result = (t >= t_min).float() * t + (t < t_min).float() * t_min
result = (result <= t_max).float() * result + (result > t_max).float() * t_max
return result
def MSELoss(pred, target):
return (pred - target) ** 2
def BCELoss(pred, target):
epsilon = 1e-7
pred = clip_by_tensor(pred, epsilon, 1.0 - epsilon)
output = -target * torch.log(pred) - (1.0 - target) * torch.log(1.0 - pred)
return output
class YOLOLoss(nn.Module):
def __init__(self, anchors, num_classes, img_size, cuda):
super(YOLOLoss, self).__init__()
self.anchors = anchors
self.num_anchors = len(anchors)
self.num_classes = num_classes
self.bbox_attrs = 5 + num_classes
self.feature_length = [img_size[0] // 32, img_size[0] // 16, img_size[0] // 8]
self.img_size = img_size
self.ignore_threshold = 0.5
self.lambda_xy = 1.0
self.lambda_wh = 1.0
self.lambda_conf = 1.0
self.lambda_cls = 1.0
self.cuda = cuda
def forward(self, input, targets=None):
# input为bs,3*(5+num_classes),13,13
# 一共多少张图片
bs = input.size(0)
# 特征层的高
in_h = input.size(2)
# 特征层的宽
in_w = input.size(3)
# 计算步长
# 每一个特征点对应原来的图片上多少个像素点
# 如果特征层为13x13的话,一个特征点就对应原来的图片上的32个像素点
stride_h = self.img_size[1] / in_h
stride_w = self.img_size[0] / in_w
# 把先验框的尺寸调整成特征层大小的形式
# 计算出先验框在特征层上对应的宽高
scaled_anchors = [(a_w / stride_w, a_h / stride_h) for a_w, a_h in self.anchors]
# bs,3*(5+num_classes),13,13 -> bs,3,13,13,(5+num_classes)
prediction = input.view(bs, int(self.num_anchors / 3),
self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous()
# 对prediction预测进行调整
x = torch.sigmoid(prediction[..., 0]) # Center x,目的是为保证中心点落在单元格内
y = torch.sigmoid(prediction[..., 1]) # Center y
w = prediction[..., 2] # Width
h = prediction[..., 3] # Height
conf = torch.sigmoid(prediction[..., 4]) # Conf
pred_cls = torch.sigmoid(prediction[..., 5:]) # Cls pred.
# 找到哪些先验框内部包含物体
mask, noobj_mask, tx, ty, tw, th, tconf, tcls, box_loss_scale_x, box_loss_scale_y = \
self.get_target(targets, scaled_anchors,
in_w, in_h,
self.ignore_threshold)
noobj_mask = self.get_ignore(prediction, targets, scaled_anchors, in_w, in_h, noobj_mask)
if self.cuda:
box_loss_scale_x = (box_loss_scale_x).cuda()
box_loss_scale_y = (box_loss_scale_y).cuda()
mask, noobj_mask = mask.cuda(), noobj_mask.cuda()
tx, ty, tw, th = tx.cuda(), ty.cuda(), tw.cuda(), th.cuda()
tconf, tcls = tconf.cuda(), tcls.cuda()
box_loss_scale = 2 - box_loss_scale_x * box_loss_scale_y
# losses.
# print("x", x.shape)
# print("x", x)
loss_x = torch.sum(BCELoss(x, tx) / bs * box_loss_scale * mask) # x为预测调整值 tx为真实调整值
loss_y = torch.sum(BCELoss(y, ty) / bs * box_loss_scale * mask)
# w为预测的宽度调整值
# tw = math.log(gw / scale_anchors[best_n+subtract_index][0])
# gw为真实框在特征图尺寸上的宽度 / 先验框在特征图尺寸上的宽度
loss_w = torch.sum(MSELoss(w, tw) / bs * 0.5 * box_loss_scale * mask)
loss_h = torch.sum(MSELoss(h, th) / bs * 0.5 * box_loss_scale * mask)
loss_conf = torch.sum(BCELoss(conf, mask) * mask / bs) + \
torch.sum(BCELoss(conf, mask) * noobj_mask / bs)
loss_cls = torch.sum(BCELoss(pred_cls[mask == 1], tcls[mask == 1]) / bs)
loss = loss_x * self.lambda_xy + loss_y * self.lambda_xy + \
loss_w * self.lambda_wh + loss_h * self.lambda_wh + \
loss_conf * self.lambda_conf + loss_cls * self.lambda_cls
print("losses:", loss, loss_x.item() + loss_y.item(), loss_w.item() + loss_h.item(),
loss_conf.item(), loss_cls.item(), \
torch.sum(mask), torch.sum(noobj_mask))
return loss, loss_x.item(), loss_y.item(), loss_w.item(), \
loss_h.item(), loss_conf.item(), loss_cls.item()
def get_target(self, target, anchors, in_w, in_h, ignore_threshold):
# 计算一共有多少张图片
bs = len(target)
# 获得先验框
anchor_index = [[0, 1, 2], [3, 4, 5], [6, 7, 8]][self.feature_length.index(in_w)]
subtract_index = [0, 3, 6][self.feature_length.index(in_w)]
# 创建全是0或者全是1的阵列
mask = torch.zeros(bs, int(self.num_anchors / 3), in_h, in_w, requires_grad=False)
noobj_mask = torch.ones(bs, int(self.num_anchors / 3), in_h, in_w, requires_grad=False)
tx = torch.zeros(bs, int(self.num_anchors / 3), in_h, in_w, requires_grad=False)
ty = torch.zeros(bs, int(self.num_anchors / 3), in_h, in_w, requires_grad=False)
tw = torch.zeros(bs, int(self.num_anchors / 3), in_h, in_w, requires_grad=False)
th = torch.zeros(bs, int(self.num_anchors / 3), in_h, in_w, requires_grad=False)
tconf = torch.zeros(bs, int(self.num_anchors / 3), in_h, in_w, requires_grad=False)
tcls = torch.zeros(bs, int(self.num_anchors / 3), in_h, in_w, self.num_classes, requires_grad=False)
box_loss_scale_x = torch.zeros(bs, int(self.num_anchors / 3), in_h, in_w, requires_grad=False)
box_loss_scale_y = torch.zeros(bs, int(self.num_anchors / 3), in_h, in_w, requires_grad=False)
print("bs", bs)
for b in range(bs):
for t in range(target[b].shape[0]):
# 计算出在特征层上的点位
gx = target[b][t, 0] * in_w
gy = target[b][t, 1] * in_h
gw = target[b][t, 2] * in_w # target中是真实框的宽相对于图片框的比例 0<target[b][t, 2]<1
gh = target[b][t, 3] * in_h
# 计算出属于哪个网格
gi = int(gx)
gj = int(gy)
# 计算真实框的位置
gt_box = torch.FloatTensor(np.array([0, 0, gw, gh])).unsqueeze(0)
# 计算出所有先验框的位置
anchor_shapes = torch.FloatTensor(
np.concatenate((np.zeros((self.num_anchors, 2)), np.array(anchors)), 1))
# 计算重合程度
anch_ious = bbox_iou(gt_box, anchor_shapes)
# Find the best matching anchor box
best_n = np.argmax(anch_ious)
if best_n not in anchor_index:
continue
# Masks
if (gj < in_h) and (gi < in_w):
best_n = best_n - subtract_index # best_n只能为0/1/2
# 判定哪些先验框内部真实的存在物体
noobj_mask[b, best_n, gj, gi] = 0 # noobj_mask 没物体为1 有物体为0
mask[b, best_n, gj, gi] = 1 # mask 没物体为0 有物体为1
# 计算先验框中心调整参数
tx[b, best_n, gj, gi] = gx - gi
ty[b, best_n, gj, gi] = gy - gj
# 计算先验框宽高调整参数
tw[b, best_n, gj, gi] = math.log(gw / anchors[best_n + subtract_index][0])
th[b, best_n, gj, gi] = math.log(gh / anchors[best_n + subtract_index][1])
# 用于获得xywh的比例
box_loss_scale_x[b, best_n, gj, gi] = target[b][t, 2]
box_loss_scale_y[b, best_n, gj, gi] = target[b][t, 3]
# 物体置信度
tconf[b, best_n, gj, gi] = 1
# 种类
tcls[b, best_n, gj, gi, int(target[b][t, 4])] = 1
else:
print('Step {0} out of bound'.format(b))
print('gj: {0}, height: {1} | gi: {2}, width: {3}'.format(gj, in_h, gi, in_w))
continue
return mask, noobj_mask, tx, ty, tw, th, tconf, tcls, box_loss_scale_x, box_loss_scale_y
def get_ignore(self, prediction, target, scaled_anchors, in_w, in_h, noobj_mask):
bs = len(target)
anchor_index = [[0, 1, 2], [3, 4, 5], [6, 7, 8]][self.feature_length.index(in_w)]
scaled_anchors = np.array(scaled_anchors)[anchor_index]
# 先验框的中心位置的调整参数
x = torch.sigmoid(prediction[..., 0])
y = torch.sigmoid(prediction[..., 1])
# 先验框的宽高调整参数
w = prediction[..., 2] # Width
h = prediction[..., 3] # Height
FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
# 生成网格,先验框中心,网格左上角
grid_x = torch.linspace(0, in_w - 1, in_w).repeat(in_w, 1).repeat(
int(bs * self.num_anchors / 3), 1, 1).view(x.shape).type(FloatTensor)
grid_y = torch.linspace(0, in_h - 1, in_h).repeat(in_h, 1).t().repeat(
int(bs * self.num_anchors / 3), 1, 1).view(y.shape).type(FloatTensor)
# 生成先验框的宽高
anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))
anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1]))
anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(w.shape)
anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(h.shape)
# 计算调整后的先验框中心与宽高
pred_boxes = FloatTensor(prediction[..., :4].shape)
pred_boxes[..., 0] = x.data + grid_x
pred_boxes[..., 1] = y.data + grid_y
pred_boxes[..., 2] = torch.exp(w.data) * anchor_w
pred_boxes[..., 3] = torch.exp(h.data) * anchor_h
for i in range(bs):
pred_boxes_for_ignore = pred_boxes[i]
pred_boxes_for_ignore = pred_boxes_for_ignore.view(-1, 4)
if len(target[i]) > 0:
gx = target[i][:, 0:1] * in_w
gy = target[i][:, 1:2] * in_h
gw = target[i][:, 2:3] * in_w
gh = target[i][:, 3:4] * in_h
gt_box = torch.FloatTensor(np.concatenate([gx, gy, gw, gh], -1)).type(FloatTensor)
anch_ious = jaccard(gt_box, pred_boxes_for_ignore)
for t in range(target[i].shape[0]):
anch_iou = anch_ious[t].view(pred_boxes[i].size()[:3])
noobj_mask[i][anch_iou > self.ignore_threshold] = 0
# print(torch.max(anch_ious))
return noobj_mask
这篇关于【程序】yolo v3 :loss的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!