C/C++教程

selective search 算法

本文主要是介绍selective search 算法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

早期的RCNN目标检测算法中使用selective search算法来产生region proposals.
该算法的大致流程如下:
1、利用图分割算法将图像分成不同的区域,并为这些区域产生相应的包围框
2、计算包围框之间的相似度,相似度可以分为四个部分(颜色相似度、纹理相似度和大小,相交约束),合并相近的包围框
3、排除过大、过小、长宽比过大、过小的包围框即可

参考代码:https://github.com/tttanikawa/selective-search-cpp

#pragma once

#include <algorithm>
#include <array>
#include <cassert>
#include <chrono>
#include <cmath>
#include <iostream>
#include <iterator>
#include <map>
#include <memory>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/ml.hpp>
#include <opencv2/objdetect.hpp>
#include <random>
#include <unordered_map>
#include <vector>

namespace std
{
    template <>
    class hash<std::pair<int, int>>
    {
    public:
        std::size_t operator()(const std::pair<int, int> &x) const
        {
            return hash<int>()(x.first) ^ hash<int>()(x.second);
        }
    };
} // namespace std

namespace ss
{

    inline double square(double a)
    {
        return a * a;
    }

    inline double diff(const cv::Mat &img, int x1, int y1, int x2, int y2)
    {
        return sqrt(square(img.at<cv::Vec3f>(y1, x1)[0] - img.at<cv::Vec3f>(y2, x2)[0]) +
                    square(img.at<cv::Vec3f>(y1, x1)[1] - img.at<cv::Vec3f>(y2, x2)[1]) +
                    square(img.at<cv::Vec3f>(y1, x1)[2] - img.at<cv::Vec3f>(y2, x2)[2]));
    }

    struct UniverseElement
    {
        int rank;
        int p;
        int size;

        UniverseElement() : rank(0), size(1), p(0) {}
        UniverseElement(int rank, int size, int p) : rank(rank), size(size), p(p) {}

        bool operator==(const UniverseElement &other) const
        {
            return rank == other.rank && p == other.p && size == other.size;
        }
    };

    class Universe
    {
    private:
        std::vector<UniverseElement> elements;
        int num;

    public:
        Universe(int num) : num(num)
        {
            elements.reserve(num);

            for (int i = 0; i < num; i++)
            {
                elements.emplace_back(0, 1, i);
            }
        }

        ~Universe() {}

        int findFast(int x)
        {
            return elements[x].p;
        }

        int find(int x)
        {
            int y = x;
            while (y != elements[y].p)
            {
                y = elements[y].p;
            }
            elements[x].p = y;

            return y;
        }

        void join(int x, int y)
        {
            if (elements[x].rank > elements[y].rank)
            {
                elements[y].p = x;
                elements[x].size += elements[y].size;
            }
            else
            {
                elements[x].p = y;
                elements[y].size += elements[x].size;
                if (elements[x].rank == elements[y].rank)
                {
                    elements[y].rank++;
                }
            }
            num--;
        }

        int size(int x) const { return elements[x].size; }
        int numSets() const { return num; }
    };

    struct edge
    {
        int a;
        int b;
        double w;
    };

    bool operator<(const edge &a, const edge &b)
    {
        return a.w < b.w;
    }

    inline double calThreshold(int size, double scale)
    {
        return scale / size;
    }

    std::shared_ptr<Universe> segmentGraph(int numVertices, int numEdges, std::vector<edge> &edges, double scale)
    {
        std::sort(edges.begin(), edges.end());
        auto universe = std::make_shared<Universe>(numVertices);
        std::vector<double> threshold(numVertices, scale);

        for (auto &pedge : edges)
        {
            int a = universe->find(pedge.a);
            int b = universe->find(pedge.b);
            if (a != b)
            {
                if ((pedge.w <= threshold[a]) && (pedge.w <= threshold[b]))
                {
                    universe->join(a, b);
                    a = universe->find(a);
                    threshold[a] = pedge.w + calThreshold(universe->size(a), scale);
                }
            }
        }

        return universe;
    }

    // image segmentation using "Efficient Graph-Based Image Segmentation" // 类似并查集
    std::shared_ptr<Universe> segmentation(const cv::Mat &img, double scale, double sigma, int minSize)
    {
        const int width = img.cols;
        const int height = img.rows;

        cv::Mat imgF;
        img.convertTo(imgF, CV_32FC3);

        cv::Mat blurred;
        cv::GaussianBlur(imgF, blurred, cv::Size(5, 5), sigma);

        std::vector<edge> edges(width * height * 4);
        int num = 0;
        for (int y = 0; y < height; y++)
        {
            for (int x = 0; x < width; x++)
            {
                if (x < width - 1)
                {
                    edges[num].a = y * width + x;
                    edges[num].b = y * width + (x + 1);
                    edges[num].w = diff(blurred, x, y, x + 1, y);
                    num++;
                }

                if (y < height - 1)
                {
                    edges[num].a = y * width + x;
                    edges[num].b = (y + 1) * width + x;
                    edges[num].w = diff(blurred, x, y, x, y + 1);
                    num++;
                }

                if ((x < width - 1) && (y < height - 1))
                {
                    edges[num].a = y * width + x;
                    edges[num].b = (y + 1) * width + (x + 1);
                    edges[num].w = diff(blurred, x, y, x + 1, y + 1);
                    num++;
                }

                if ((x < width - 1) && (y > 0))
                {
                    edges[num].a = y * width + x;
                    edges[num].b = (y - 1) * width + (x + 1);
                    edges[num].w = diff(blurred, x, y, x + 1, y - 1);
                    num++;
                }
            }
        }

        edges.erase(edges.begin() + num, edges.end());
        auto universe = segmentGraph(width * height, num, edges, scale);
        for (int i = 0; i < num; i++)
        {
            int a = universe->find(edges[i].a);
            int b = universe->find(edges[i].b);
            if ((a != b) && ((universe->size(a) < minSize) || (universe->size(b) < minSize)))
            {
                universe->join(a, b);
            }
        }
        return universe;
    }

    void visualize(const cv::Mat &img, std::shared_ptr<Universe> universe)
    {
        const int height = img.rows;
        const int width = img.cols;
        std::vector<cv::Vec3b> colors;
        cv::Mat segmentated(height, width, CV_8UC3);
        std::random_device rnd;
        std::mt19937 mt(rnd());
        std::uniform_int_distribution<> rand256(0, 255);
        for (int i = 0; i < height * width; i++)
        {
            cv::Vec3b color(rand256(mt), rand256(mt), rand256(mt));
            colors.push_back(color);
        }

        for (int y = 0; y < height; y++)
        {
            for (int x = 0; x < width; x++)
            {
                segmentated.at<cv::Vec3b>(y, x) = colors[universe->findFast(y * width + x)];
            }
        }
        cv::imshow("Initial Segmentation Result", segmentated);
        cv::waitKey(1);
    }

    struct Region
    {
        int size;
        cv::Rect rect;
        std::vector<int> labels;
        std::vector<float> colourHist;
        std::vector<float> textureHist;
        std::vector<cv::Vec2i> points;

        Region() {}

        Region(const cv::Rect &rect, int label) : rect(rect)
        {
            labels.push_back(label);
        }

        Region(
            const cv::Rect &rect, int size, const std::vector<float> &&colourHist, const std::vector<float> &&textureHist, const std::vector<int> &&labels)
            : rect(rect), size(size), colourHist(std::move(colourHist)), textureHist(std::move(textureHist)), labels(std::move(labels)) {}

        Region &operator=(const Region &region) = default;

        Region &operator=(Region &&region) noexcept
        {
            if (this != &region)
            {
                this->size = region.size;
                this->rect = region.rect;
                this->labels = std::move(region.labels);
                this->colourHist = std::move(region.colourHist);
                this->textureHist = std::move(region.textureHist);
            }

            return *this;
        }

        Region(Region &&region) noexcept
        {
            *this = std::move(region);
        }
    };

    std::shared_ptr<Universe> generateSegments(const cv::Mat &img, double scale, double sigma, int minSize)
    {
        auto universe = segmentation(img, scale, sigma, minSize);
        //visualize(img, universe);
        return universe;
    }

    double calcSimOfColour(const Region &r1, const Region &r2)
    {
        assert(r1.colourHist.size() == r2.colourHist.size());
        float sum = 0.0;
        for (auto i1 = r1.colourHist.cbegin(), i2 = r2.colourHist.cbegin(); i1 != r1.colourHist.cend(); i1++, i2++)
        {
            sum += std::min(*i1, *i2);
        }
        return sum;
    }

    double calcSimOfTexture(const Region &r1, const Region &r2)
    {
        assert(r1.colourHist.size() == r2.colourHist.size());
        double sum = 0.0;
        // cbegin, cend返回const迭代器
        for (auto i1 = r1.textureHist.cbegin(), i2 = r2.textureHist.cbegin(); i1 != r1.textureHist.cend(); i1++, i2++)
        {
            sum += std::min(*i1, *i2);
        }

        return sum;
    }

    inline double calcSimOfSize(const Region &r1, const Region &r2, int imSize)
    {
        return (1.0 - (double)(r1.size + r2.size) / imSize);// 降低两个较大的矩形合并的概率
    }

    inline double calcSimOfRect(const Region &r1, const Region &r2, int imSize)
    {
        return (1.0 - (double)((r1.rect | r2.rect).area() - r1.size - r2.size) / imSize); //相交面积越大,相似度越高
    }

    inline double calcSimilarity(const Region &r1, const Region &r2, int imSize)
    {
        return (calcSimOfColour(r1, r2) + calcSimOfTexture(r1, r2) + calcSimOfSize(r1, r2, imSize) + calcSimOfRect(r1, r2, imSize)); // 相似度包括颜色、纹理、size、rect
    }

    void calcColourHist(const cv::Mat &img, std::shared_ptr<Universe> universe, int label, Region &region)
    {
        std::array<std::vector<unsigned char>, 3> hsv;
        for (auto &e : hsv)
        {
            e.reserve(region.points.size());
        }

        for (cv::Vec2i point : region.points)
        {
            for (int channel = 0; channel < 3; channel++)
            {
                hsv[channel].push_back(img.at<cv::Vec3b>(point[0], point[1])[channel]);
            }
        }

        int channels[] = {0};
        const int bins = 25;
        int histSize[] = {bins};
        float range[] = {0, 256};
        const float *ranges[] = {range};
        for (int channel = 0; channel < 3; channel++)
        {
            cv::Mat hist;
            cv::Mat input(hsv[channel]);
            cv::calcHist(&input, 1, channels, cv::Mat(), hist, 1, histSize, ranges, true, false);
            cv::normalize(hist, hist, 1.0, 0.0, cv::NORM_L1);

            std::vector<float> histogram;
            hist.copyTo(histogram);
            if (region.colourHist.empty())
            {
                region.colourHist = std::move(histogram);
            }
            else
            {
                std::copy(histogram.begin(), histogram.end(), std::back_inserter(region.colourHist));
            }
        }
    }

    cv::Mat calcTextureGradient(const cv::Mat &img)
    {
        cv::Mat sobelX, sobelY;
        cv::Sobel(img, sobelX, CV_32F, 1, 0);
        cv::Sobel(img, sobelY, CV_32F, 0, 1);
        cv::Mat magnitude, angle;
        cv::cartToPolar(sobelX, sobelY, magnitude, angle, true);
        return angle;
    }
    // 统计一阶sobel算子的方向角直方图
    void calcTextureHist(const cv::Mat &img, const cv::Mat &gradient, std::shared_ptr<Universe> universe, int label, Region &region)
    {
        const int orientations = 8;
        std::array<std::array<std::vector<unsigned char>, orientations>, 3> intensity;
        for (auto &e : intensity)
        {
            for (auto &ee : e)
            {
                ee.reserve(region.points.size());
            }
        }
        for (cv::Vec2i point : region.points)
        {
            for (int channel = 0; channel < 3; channel++)
            {
                int angle = (int)(gradient.at<cv::Vec3f>(point[0], point[1])[channel] / 22.5) % orientations;
                intensity[channel][angle].push_back(img.at<cv::Vec3b>(point[0], point[1])[channel]);
            }
        }

        int channels[] = {0};
        const int bins = 10;
        int histSize[] = {bins};
        float range[] = {0, 256};
        const float *ranges[] = {range};
        for (int channel = 0; channel < 3; channel++)
        {
            for (int angle = 0; angle < orientations; angle++)
            {
                cv::Mat hist;
                cv::Mat input(intensity[channel][angle]);
                cv::calcHist(&input, 1, channels, cv::Mat(), hist, 1, histSize, ranges, true, false);
                cv::normalize(hist, hist, 1.0, 0.0, cv::NORM_L1);
                std::vector<float> histogram;
                hist.copyTo(histogram);
                if (region.textureHist.empty())
                {
                    region.textureHist = std::move(histogram);
                }
                else
                {
                    std::copy(histogram.begin(), histogram.end(), std::back_inserter(region.textureHist));
                }
            }
        }
    }

    std::map<int, Region> extractRegions(const cv::Mat &img, std::shared_ptr<Universe> universe)
    {
        std::map<int, Region> R;
        for (int y = 0; y < img.rows; y++)
        {
            for (int x = 0; x < img.cols; x++)
            {
                int label = universe->findFast(y * img.cols + x);
                if (R.find(label) == R.end())
                {
                    R[label] = Region(cv::Rect(100000, 100000, 0, 0), label);
                }

                Region &region = R[label];
                if (region.rect.x > x)
                {
                    region.rect.x = x;
                }
                if (region.rect.y > y)
                {
                    region.rect.y = y;
                }
                if (region.rect.br().x < x)
                {
                    region.rect.width = x - region.rect.x + 1;
                }
                if (region.rect.br().y < y)
                {
                    region.rect.height = y - region.rect.y + 1;
                }
                region.points.push_back(cv::Vec2i(y, x));
            }
        }

        cv::Mat gradient = calcTextureGradient(img);
        cv::Mat hsv;
        cv::cvtColor(img, hsv, cv::COLOR_BGR2HSV);
        for (auto &labelRegion : R)
        {
            labelRegion.second.size = labelRegion.second.points.size();
            calcColourHist(hsv, universe, labelRegion.first, labelRegion.second);
            calcTextureHist(img, gradient, universe, labelRegion.first, labelRegion.second);
        }
        return R;
    }

    inline bool isIntersecting(const Region &a, const Region &b)
    {
        return ((a.rect & b.rect).area() != 0);
    }

    using LabelRegion = std::pair<int, Region>;
    using Neighbour = std::pair<int, int>;
    std::vector<Neighbour> extractNeighbours(const std::map<int, Region> &R)
    {
        std::vector<Neighbour> neighbours;
        neighbours.reserve(R.size() * (R.size() - 1) / 2);
        for (auto a = R.cbegin(); a != R.cend(); a++)
        {
            auto tmp = a;
            tmp++;
            for (auto b = tmp; b != R.cend(); b++)
            {
                if (isIntersecting(a->second, b->second))
                {
                    neighbours.push_back(std::make_pair(std::min(a->first, b->first), std::max(a->first, b->first)));
                }
            }
        }
        return neighbours;
    }

    std::vector<float> merge(const std::vector<float> &a, const std::vector<float> &b, int asize, int bsize)
    {
        std::vector<float> newVector;
        newVector.reserve(a.size());
        for (auto ai = a.begin(), bi = b.begin(); ai != a.end(); ai++, bi++)
        {
            newVector.push_back(((*ai) * asize + (*bi) * bsize) / (asize + bsize));
        }
        return newVector;
    };

    Region mergeRegions(const Region &r1, const Region &r2)
    {
        assert(r1.colourHist.size() == r2.colourHist.size());
        assert(r1.textureHist.size() == r2.textureHist.size());
        int newSize = r1.size + r2.size;
        std::vector<int> newLabels(r1.labels);
        std::copy(r2.labels.begin(), r2.labels.end(), std::back_inserter(newLabels));
        return Region(r1.rect | r2.rect,
                      newSize,
                      std::move(merge(r1.colourHist, r2.colourHist, r1.size, r2.size)),
                      std::move(merge(r1.textureHist, r2.textureHist, r1.size, r2.size)),
                      std::move(newLabels));
    }

    std::vector<cv::Rect> selectiveSearch(const cv::Mat &img, double scale = 1.0, double sigma = 0.8, int minSize = 50, int smallest = 1000, int largest = 270000, double distorted = 5.0)
    {
        assert(img.channels() == 3);
        auto universe = generateSegments(img, scale, sigma, minSize);
        int imgSize = img.total();
        auto R = extractRegions(img, universe); // 先通过采样获得regions
        auto neighbours = extractNeighbours(R); // 为region提取neighbours, 保存为vector<pair<int, int>>
        std::unordered_map<std::pair<int, int>, double> S;
        for (auto &n : neighbours)
        {
            S[n] = calcSimilarity(R[n.first], R[n.second], imgSize);  // 为每个pair 计算相似度
        }

        using NeighbourSim = std::pair<std::pair<int, int>, double>;
        while (!S.empty())
        {
            auto cmp = [](const NeighbourSim &a, const NeighbourSim &b)
            { return a.second < b.second; };
            auto m = std::max_element(S.begin(), S.end(), cmp); //找到最大相似度的
            //if(m->second<10) break; // 这里为啥不把相似度太低的直接排除
            int i = m->first.first; 
            int j = m->first.second;
            auto ij = std::make_pair(i, j);
            int t = R.rbegin()->first + 1;// 最大序号加1
            R[t] = mergeRegions(R[i], R[j]);// 保存region i + region j

            std::vector<std::pair<int, int>> keyToDelete;
            for (auto &s : S)
            {
                auto key = s.first;
                if ((i == key.first) || (i == key.second) || (j == key.first) || (j == key.second))
                {
                    keyToDelete.push_back(key);  // 所有i,j相关的区域都加进去
                }
            }

            for (auto &key : keyToDelete)
            {
                S.erase(key);
                if (key == ij)
                {
                    continue;
                }
                int n = (key.first == i || key.first == j) ? key.second : key.first;// n 除i,j外的其他
                S[std::make_pair(n, t)] = calcSimilarity(R[n], R[t], imgSize); // 重新计算相似度, S的大小每次减1,知道为0?
            }
        }

        std::vector<cv::Rect> proposals;
        proposals.reserve(R.size());
        for (auto &r : R)
        {
            // exclude same rectangle (with different segments)
            if (std::find(proposals.begin(), proposals.end(), r.second.rect) != proposals.end())
            {
                continue;
            }
            // exclude regions that is smaller/larger than assigned size
            if (r.second.size < smallest || r.second.size > largest) // 
            {
                continue;
            }
            double w = r.second.rect.width;
            double h = r.second.rect.height;

            // exclude distorted rects
            if ((w / h > distorted) || (h / w > distorted))
            {
                continue;
            }
            proposals.push_back(r.second.rect);
        }
        return proposals;
    }
} // namespace ss

test:

#include "selective_search.hpp"
#include <opencv2/opencv.hpp>

int main(int argc, char** argv) {
    std::string fileName = "./deer.jpg";
    cv::Mat     img      = cv::imread(fileName, cv::IMREAD_COLOR);

    // selective search
    auto proposals = ss::selectiveSearch(img, 500, 0.8, 50, 20000, 100000, 2.5);
    // do something...

    for (auto&& rect : proposals) {
        cv::rectangle(img, rect, cv::Scalar(0, 255, 0), 3, 8);
    }
    cv::imwrite("./result.jpg", img);
    cv::imshow("result", img);
    cv::waitKey(0);
    return 0;
}

makefile:

CC = g++
CFLAGS = -g -Wall
SRCS = test.cpp
PROG = test

all: $(PROG)

clean:
	$(RM) $(PROG)

OPENCV = `pkg-config opencv --cflags --libs`
LIBS = $(OPENCV)

$(PROG):$(SRCS)
	$(CC) $(CFLAGS) -o $(PROG) $(SRCS) $(LIBS)

图分割结果:
在这里插入图片描述
最后产生的包围框:
在这里插入图片描述
图分割和其他部分的耗时对比:
1158397: 815254

这篇关于selective search 算法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!