Java 8 是一个革命性的版本,这个版本新增的Stream、Optional 等,配合同版本出现的 Lambda ,给我们操作集合(Collection)提供了极大的便利。
Stream将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。
Optional 类是 Java 8 引入的一个很有趣的特性。Optional 类主要解决的问题是臭名昭著的空指针异常(NullPointerException) 。
本质上,这是一个包含有可选值的包装类,这意味着 Optional 类既可以含有对象也可以为空。
这篇文章只讲Stream,Optional会单独写一篇文章。
Stream有几个特性:
//第一种 List<String> list = new ArrayList<>(); list.add("a"); list.add("b"); //第二种 //List<String> list = Arrays.asList("a", "b", "c"); // 顺序流 Stream<String> stream = list.stream(); // 并行流,第一种方式 Stream<String> parallelStream = list.parallelStream(); //第二种方式创建并行流,把顺序流转换成并行流 Stream<String> parallelStream = list.stream().parallel();
stream和parallelStream区分:
stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。
String[] array={"a","b"}; Stream<String> stream = Arrays.stream(array);
int[] array={1,2,3,4}; //public static<T> Stream<T> of(T... values) Stream<String> stream = Stream.of(array); //按规则迭代出3个数 Stream<Integer> stream2 = Stream.iterate(0, (x) -> x * 2).limit(3); stream2.forEach(System.out::println); //随机生成3个数 Stream<Double> stream3 = Stream.generate(Math::random).limit(3); stream3.forEach(System.out::println);
测试实体:
@data public class Staff{ // 姓名 private String name; // 薪资 private int salary; // 年龄 private int age; private String sex; private String area; // 地区 }
List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1); // 遍历输出符合条件的元素 list.stream().forEach(System.out::println); // 匹配第一个 Optional<Integer> findFirst = list.stream().findFirst(); // 匹配任意(适用于并行流) Optional<Integer> findAny = list.parallelStream().findAny(); // 是否包含符合特定条件的元素 boolean anyMatch = list.stream().anyMatch(x -> x < 6); System.out.println("匹配第一个值:" + findFirst.get()); System.out.println("匹配任意一个值:" + findAny.get()); System.out.println("是否存在大于6的值:" + anyMatch);
筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。
//需求:筛选员工中工资高于8000的人,并形成新的集合 List<Staff> staffList = new ArrayList<Staff>(); staffList.add(new Staff("Tom", 8900, 23, "male", "New York")); staffList.add(new Staff("Jack", 7000, 25, "male", "Washington")); staffList.add(new Staff("Lily", 7800, 21, "female", "Washington")); staffList.add(new Staff("Anni", 8200, 24, "female", "New York")); staffList.add(new Staff("Owen", 9500, 25, "male", "New York")); staffList.add(new Staff("Alisa", 7900, 26, "female", "New York")); List<String> fiterList = staffList.stream().filter(x -> x.getSalary() > 8000).map(Staff::getName) .collect(Collectors.toList()); System.out.print("高于8000的员工姓名:" + fiterList);
Java stream中也引入了max、min、count这些用法,极大地方便了我们对集合、数组的数据统计工作。
//需求:获取员工工资最高的人 List<Staff> staffList= new ArrayList<Staff>(); staffList.add(new Staff("Tom", 8900, 23, "male", "New York")); staffList.add(new Staff("Jack", 7000, 25, "male", "Washington")); staffList.add(new Staff("Lily", 7800, 21, "female", "Washington")); staffList.add(new Staff("Anni", 8200, 24, "female", "New York")); staffList.add(new Staff("Owen", 9500, 25, "male", "New York")); staffList.add(new Staff("Alisa", 7900, 26, "female", "New York")); Optional<Person> max = staffList.stream().max(Comparator.comparingInt(Staff::getSalary)); System.out.println("员工工资最大值:" + max.get().getSalary());
//需求:获取Integer集合中的最大值 List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6); // 自然排序 Optional<Integer> max = list.stream().max(Integer::compareTo); // 自定义排序 Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o1.compareTo(o2); } }); System.out.println("自然排序的最大值:" + max.get()); System.out.println("自定义排序的最大值:" + max2.get());
//需求:获取String集合中最短的元素 List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd"); Optional<String> min = list.stream().min(Comparator.comparing(String::length)); System.out.println("最长的字符串:" + min.get());
//需求:计算Integer集合中大于6的元素的个数 List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9); long count = list.stream().filter(x -> x > 6).count(); System.out.println("list中大于6的元素个数:" + count);
映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatMap:
//需求:英文字符串数组的元素全部改为大写。整数数组每个元素+3 String[] strArr = { "abcd", "bcdd", "defde", "fTr" }; List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList()); List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11); List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList()); System.out.println("每个元素大写:" + strList); System.out.println("每个元素+3:" + intListNew);
//需求:将两个字符数组合并成一个新的字符数组 List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7"); List<String> listNew = list.stream().flatMap(s -> { // 将每个元素转换成一个stream String[] split = s.split(","); Stream<String> s2 = Arrays.stream(split); return s2; }).collect(Collectors.toList()); System.out.println("处理前的集合:" + list); System.out.println("处理后的集合:" + listNew);
归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4); // 求和方式1 Optional<Integer> sum = list.stream().reduce((x, y) -> x + y); // 求和方式2 Optional<Integer> sum2 = list.stream().reduce(Integer::sum); // 求和方式3 Integer sum3 = list.stream().reduce(0, Integer::sum); // 求乘积 Optional<Integer> product = list.stream().reduce((x, y) -> x * y); // 求最大值方式1 Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y); // 求最大值写法2 Integer max2 = list.stream().reduce(1, Integer::max); System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3); System.out.println("list求积:" + product.get()); System.out.println("list求和:" + max.get() + "," + max2);
collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。
collect主要依赖java.util.stream.Collectors类内置的静态方法。
因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList、toSet和toMap比较常用,另外还有toCollection、toConcurrentMap等复杂一些的用法。
List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20); List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList()); Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet()); List<Staff> staffList = new ArrayList<Staff>(); staffList.add(new Staff("Tom", 8900, 23, "male", "New York")); staffList.add(new Staff("Jack", 7000, 25, "male", "Washington")); staffList.add(new Staff("Lily", 7800, 21, "female", "Washington")); staffList.add(new Staff("Anni", 8200, 24, "female", "New York")); Map<?, Staff> map = staffList.stream().filter(p -> p.getSalary() > 8000) .collect(Collectors.toMap(Staff::getName, p -> p)); System.out.println("toList:" + listNew); System.out.println("toSet:" + set); System.out.println("toMap:" + map);
Collectors提供了一系列用于数据统计的静态方法:
List<Staff> staffList= new ArrayList<Staff>(); staffList.add(new Staff("Tom", 8900, 23, "male", "New York")); staffList.add(new Staff("Jack", 7000, 25, "male", "Washington")); staffList.add(new Staff("Lily", 7800, 21, "female", "Washington")); // 求总数 Long count = staffList.stream().collect(Collectors.counting()); // 求平均工资 Double average = staffList.stream().collect(Collectors.averagingDouble(Staff::getSalary)); // 求最高工资 Optional<Integer> max = staffList.stream().map(Staff::getSalary).collect(Collectors.maxBy(Integer::compare)); // 求工资之和 Integer sum = staffList.stream().collect(Collectors.summingInt(Staff::getSalary)); // 一次性统计所有信息 DoubleSummaryStatistics collect = staffList.stream().collect(Collectors.summarizingDouble(Staff::getSalary)); System.out.println("员工总数:" + count); System.out.println("员工平均工资:" + average); System.out.println("员工工资总和:" + sum); System.out.println("员工工资所有统计:" + collect);
运行结果:
员工总数:3 员工平均工资:7900.0 员工工资总和:23700 员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}
//需求:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组 List<Staff> staffList= new ArrayList<Staff>(); staffList.add(new Staff("Tom", 8900, "male", "New York")); staffList.add(new Staff("Jack", 7000, "male", "Washington")); staffList.add(new Staff("Lily", 7800, "female", "Washington")); staffList.add(new Staff("Anni", 8200, "female", "New York")); staffList.add(new Staff("Owen", 9500, "male", "New York")); staffList.add(new Staff("Alisa", 7900, "female", "New York")); // 将员工按薪资是否高于8000分组 Map<Boolean, List<Staff>> part = staffList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000)); // 将员工按性别分组 Map<String, List<Staff>> group = staffList.stream().collect(Collectors.groupingBy(Staff::getSex)); // 将员工先按性别分组,再按地区分组 Map<String, Map<String, List<Staff>>> group2 = staffList.stream().collect(Collectors.groupingBy(Staff::getSex, Collectors.groupingBy(Staff::getArea))); System.out.println("员工按薪资是否大于8000分组情况:" + part); System.out.println("员工按性别分组情况:" + group); System.out.println("员工按性别、地区:" + group2);
运行结果:
员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]} 员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]} 员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}
joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。
List<Staff> staffList= new ArrayList<Staff>(); staffList.add(new Staff("Tom", 8900, 23, "male", "New York")); staffList.add(new Staff("Jack", 7000, 25, "male", "Washington")); staffList.add(new Staff("Lily", 7800, 21, "female", "Washington")); String names = staffList.stream().map(p -> p.getName()).collect(Collectors.joining(",")); System.out.println("所有员工的姓名:" + names); List<String> list = Arrays.asList("A", "B", "C"); String string = list.stream().collect(Collectors.joining("-")); System.out.println("拼接后的字符串:" + string);
运行结果:
所有员工的姓名:Tom,Jack,Lily 拼接后的字符串:A-B-C
Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。
List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); // 每个员工减去起征点后的薪资之和 Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000))); System.out.println("员工扣税薪资总和:" + sum); // stream的reduce Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum); System.out.println("员工薪资总和:" + sum2.get());
运行结果:
员工扣税薪资总和:8700 员工薪资总和:23700
sorted,中间操作。有两种排序:
//将员工按工资由高到低(工资一样则按年龄由大到小)排序 List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Sherry", 9000, 24, "female", "New York")); personList.add(new Person("Tom", 8900, 22, "male", "Washington")); personList.add(new Person("Jack", 9000, 25, "male", "Washington")); personList.add(new Person("Lily", 8800, 26, "male", "New York")); personList.add(new Person("Alisa", 9000, 26, "female", "New York")); // 按工资升序排序(自然排序) List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName) .collect(Collectors.toList()); // 按工资倒序排序 List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed()) .map(Person::getName).collect(Collectors.toList()); // 先按工资再按年龄升序排序 List<String> newList3 = personList.stream() .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName) .collect(Collectors.toList()); // 先按工资再按年龄自定义排序(降序) List<String> newList4 = personList.stream().sorted((p1, p2) -> { if (p1.getSalary() == p2.getSalary()) { return p2.getAge() - p1.getAge(); } else { return p2.getSalary() - p1.getSalary(); } }).map(Person::getName).collect(Collectors.toList()); System.out.println("按工资升序排序:" + newList); System.out.println("按工资降序排序:" + newList2); System.out.println("先按工资再按年龄升序排序:" + newList3); System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
运行结果:
按工资升序排序:[Lily, Tom, Sherry, Jack, Alisa] 按工资降序排序:[Sherry, Jack, Alisa, Tom, Lily] 先按工资再按年龄升序排序:[Lily, Tom, Sherry, Jack, Alisa] 先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]
流也可以进行合并、去重、限制、跳过等操作。
String[] arr1 = { "a", "b", "c", "d" }; String[] arr2 = { "d", "e", "f", "g" }; Stream<String> stream1 = Stream.of(arr1); Stream<String> stream2 = Stream.of(arr2); // concat:合并两个流 distinct:去重 List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList()); // limit:限制从流中获得前n个数据 List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList()); // skip:跳过前n个数据 List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList()); System.out.println("流合并:" + newList); System.out.println("limit:" + collect); System.out.println("skip:" + collect2);
运行结果:
流合并:[a, b, c, d, e, f, g] limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19] skip:[3, 5, 7, 9, 11]