2021SC@SDUSC
此次文章主要分析finemapping_vertical.py文件
#coding=utf-8 from keras.layers import Conv2D, Input,MaxPool2D, Reshape,Activation,Flatten, Dense from keras.models import Model, Sequential from keras.layers.advanced_activations import PReLU from keras.optimizers import adam import numpy as np import cv2
由代码可知,主要调用的库为keras、cv2
Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果
以下是keras的框架架构
def getModel(): input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input #将此形状更改为[None,None,3]以启用仲裁形状输入 x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) x = Activation("relu", name='relu1')(x) x = MaxPool2D(pool_size=2)(x) x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x) x = Activation("relu", name='relu2')(x) x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) x = Activation("relu", name='relu3')(x) x = Flatten()(x) output = Dense(2,name = "dense")(x) output = Activation("relu", name='relu4')(output) model = Model([input], [output]) return model def gettest_model(): input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input A = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input) B = Activation("relu", name='relu1')(A) C = MaxPool2D(pool_size=2)(B) x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(C) x = Activation("relu", name='relu2')(x) x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x) K = Activation("relu", name='relu3')(x) x = Flatten()(K) dense = Dense(2,name = "dense")(x) output = Activation("relu", name='relu4')(dense) x = Model([input], [output]) x.load_weights("./model/model12.h5") ok = Model([input], [dense]) for layer in ok.layers: print(layer) return ok
首先将图像的形状更改为[None, None,3]以启用总裁形状输入,然后使用二维卷积Con2v,及配合激活函数Activation对传入的图像构建神经网络系统并定义模型结构。激活函数在深度学习中扮演着非常重要的角色,它给网络赋予了非线性,从而使得神经网络能够拟合任意复杂的函数。非线性激活函数可以使神经网络随意逼近复杂函数,没有激活函数带来的非线性,多层神经网络和单层无异。
model = getModel() model.load_weights("./model/model12.h5")
传入图片,进行模型结构的构建,并将构建好的模型返回到model变量中
def finemappingVertical(image): resized = cv2.resize(image,(66,16)) resized = resized.astype(np.float)/255 res= model.predict(np.array([resized]))[0] print("keras_predict",res) res =res*image.shape[1] res = res.astype(np.int) H,T = res H-=3 #3 79.86 #4 79.3 #5 79.5 #6 78.3 #T #T+1 80.9 #T+2 81.75 #T+3 81.75 if H<0: H=0 T+=2; if T>= image.shape[1]-1: T= image.shape[1]-1 image = image[0:35,H:T+2] image = cv2.resize(image, (int(136), int(36))) return image
使用python的openCV的cv2库对其进行裁剪,最终裁剪为136*36的大小,并返回这个图片。该函数的目的便是裁剪图片,使图片的识别的效率更高