Java教程

Loj #6284. 数列分块入门 8

本文主要是介绍Loj #6284. 数列分块入门 8,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

Description

Loj传送门

Solution

个人认为是 \(Loj\) 上这几道分块题中比较好的一道题。

对于这道题,我们对于每一块打一个 \(lazy\) 标记,表示当前块是否被完整赋过值,即全部赋值为 \(c\)。

修改时,整块的直接修改 \(lazy\) 标记,两头多余的部分暴力修改原数组。

注意: 整个块都要重新赋值一遍。

  • 在查询范围内的:赋值为 \(c\)。

  • 在查询范围外的:赋值为 \(lazy\) 标记。

然后把该块的 \(lazy\) 标记赋值为 \(INF\)。

查询时,整块的直接判断求和,并把 \(lazy\) 改为 \(c\);两头的暴力枚举判断,同时在有 \(lazy\) 标记时进行上述修改。

修改的部分我对着数据调了好久 \(QwQ\)。

经验:一定要想好了在写,不然会漏掉许多细节。

具体见代码吧。

Code

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <map>
#include <cmath>
#define INF 1e18
#define ll long long
#define ri register int

using namespace std;

inline ll read(){
	ll x = 0, f = 1;
	char ch = getchar();
	while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
	while(ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
	return x * f;
}

const ll N = 1e5 + 10;
ll n, B, tot;
ll a[N], be[N], ml[N], mr[N], lazy[N];

inline void build(){
	B = sqrt(n);
	tot = n / B + (B * B != n);
	for(ri i = 1; i <= n; i++)
		be[i] = (i - 1) / B + 1;
	for(ri i = 1; i <= tot; i++){
		lazy[i] = INF;
		ml[i] = (i - 1) * B + 1;
		mr[i] = i * B;
	}
	mr[tot] = n;
}

inline ll calc(int l, int r, int c){
	ll res = 0;
	if(lazy[be[l]] == INF){
		for(ri i = l; i <= r; i++)
			res += (a[i] == c), a[i] = c;
	}else{
		if(lazy[be[l]] == c) res += (r - l + 1);
		else{
			for(int i = l; i <= r; i++) a[i] = c;
			for(int i = ml[be[l]]; i < l; i++) a[i] = lazy[be[l]];
			for(int i = r + 1; i <= mr[be[l]]; i++) a[i] = lazy[be[l]];
			lazy[be[l]] = INF;
		}
	}
	return res;
}

inline ll solve(ll l, ll r, ll c){
	if(be[l] == be[r]) return calc(l, r, c);
	ll res = 0;
	for(ll i = be[l] + 1; i <= be[r] - 1; i++){
		if(lazy[i] == INF){
			for(ri j = ml[i]; j <= mr[i]; j++)
				res += (a[j] == c);
		}else if(lazy[i] == c) res += B;
		lazy[i] = c;
	}
	res += calc(l, mr[be[l]], c) + calc(ml[be[r]], r, c);
	return res;
}

signed main(){
	freopen("#6284.in", "r", stdin);
	freopen("#6284.out", "w", stdout);
	n = read();
	for(ri i = 1; i <= n; i++)
		a[i] = read();
	build();
	for(ri i = 1; i <= n; i++){
		ri l = read(), r = read(), c = read();
		printf("%lld\n", solve(l, r, c));
	}
	return 0;
}

End

这篇关于Loj #6284. 数列分块入门 8的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!