Java教程

Kafka java消费者拉取消息源码

本文主要是介绍Kafka java消费者拉取消息源码,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

消费者Demo

 1 import org.apache.kafka.clients.consumer.ConsumerRecord;
 2 import org.apache.kafka.clients.consumer.ConsumerRecords;
 3 import org.apache.kafka.clients.consumer.KafkaConsumer;
 4 import org.apache.kafka.common.serialization.StringDeserializer;
 5 
 6 import java.util.Arrays;
 7 import java.util.Properties;
 8 
 9 public class ConsumerDemo {
10     private final KafkaConsumer<String, String> consumer;
11     private ConsumerRecords<String, String> msgList;
12     private final String topic;
13     private static final String GROUPID = "groupA";
14 
15     public ConsumerDemo(String topicName) {
16         Properties props = new Properties();
17         props.put("bootstrap.servers", "localhost:9092");
18         props.put("group.id", GROUPID);
19         props.put("enable.auto.commit", "true");
20         props.put("auto.commit.interval.ms", "1000");
21         props.put("session.timeout.ms", "30000");
22         props.put("auto.offset.reset", "earliest");
23         props.put("key.deserializer", StringDeserializer.class.getName());
24         props.put("value.deserializer", StringDeserializer.class.getName());
25         this.consumer = new KafkaConsumer<String, String>(props);
26         this.topic = topicName;
27         this.consumer.subscribe(Arrays.asList(topic));
28     }
29 
30 
31     public void receiveMsg() {
32         int messageNo = 1;
33         System.out.println("---------开始消费---------");
34         try {
35             for (;;) {
36                 msgList = consumer.poll(1000);
37                 if(null!=msgList&&msgList.count()>0){
38                     for (ConsumerRecord<String, String> record : msgList) {
39                         System.out.println(messageNo+"=======receive: key = " + record.key() + ", value = " + record.value()+" offset==="+record.offset());
40                     }
41                 }else{
42                     Thread.sleep(1000);
43                 }
44             }
45         } catch (InterruptedException e) {
46             e.printStackTrace();
47         } finally {
48             consumer.close();
49         }
50     }
51     public static void main(String args[]) {
52         ConsumerDemo consumerDemo = new ConsumerDemo("KAFKA_TEST");
53         consumerDemo.receiveMsg();
54     }
55 }

36行开始拉取kafka服务器消息,进入源码KafkaConsumer.java poll方法

 1     @Override
 2     public ConsumerRecords<K, V> poll(long timeout) {
 3         acquireAndEnsureOpen();
 4         try {
 5             if (timeout < 0)
 6                 throw new IllegalArgumentException("Timeout must not be negative");
 7 
 8             if (this.subscriptions.hasNoSubscriptionOrUserAssignment())
 9                 throw new IllegalStateException("Consumer is not subscribed to any topics or assigned any partitions");
10 
11             // poll for new data until the timeout expires
12             long start = time.milliseconds();
13             long remaining = timeout;
14             do {
15                 Map<TopicPartition, List<ConsumerRecord<K, V>>> records = pollOnce(remaining);
16                 if (!records.isEmpty()) {
17                     // before returning the fetched records, we can send off the next round of fetches
18                     // and avoid block waiting for their responses to enable pipelining while the user
19                     // is handling the fetched records.
20                     //
21                     // NOTE: since the consumed position has already been updated, we must not allow
22                     // wakeups or any other errors to be triggered prior to returning the fetched records.
23                     if (fetcher.sendFetches() > 0 || client.hasPendingRequests())
24                         client.pollNoWakeup();
25 
26                     if (this.interceptors == null)
27                         return new ConsumerRecords<>(records);
28                     else
29                         return this.interceptors.onConsume(new ConsumerRecords<>(records));
30                 }
31 
32                 long elapsed = time.milliseconds() - start;
33                 remaining = timeout - elapsed;
34             } while (remaining > 0);
35 
36             return ConsumerRecords.empty();
37         } finally {
38             release();
39         }
40     }

15行pollOnce()方法拉取消息,进入pollOnce()方法

 1     private Map<TopicPartition, List<ConsumerRecord<K, V>>> pollOnce(long timeout) {
 2         client.maybeTriggerWakeup();
 3         coordinator.poll(time.milliseconds(), timeout);
 4 
 5         // fetch positions if we have partitions we're subscribed to that we
 6         // don't know the offset for
 7         if (!subscriptions.hasAllFetchPositions())
 8             updateFetchPositions(this.subscriptions.missingFetchPositions());
 9 
10         // if data is available already, return it immediately
11         Map<TopicPartition, List<ConsumerRecord<K, V>>> records = fetcher.fetchedRecords();
12         if (!records.isEmpty())
13             return records;
14 
15         // send any new fetches (won't resend pending fetches)
16         fetcher.sendFetches();
17 
18         long now = time.milliseconds();
19         long pollTimeout = Math.min(coordinator.timeToNextPoll(now), timeout);
20 
21         client.poll(pollTimeout, now, new PollCondition() {
22             @Override
23             public boolean shouldBlock() {
24                 // since a fetch might be completed by the background thread, we need this poll condition
25                 // to ensure that we do not block unnecessarily in poll()
26                 return !fetcher.hasCompletedFetches();
27             }
28         });
29 
30         // after the long poll, we should check whether the group needs to rebalance
31         // prior to returning data so that the group can stabilize faster
32         if (coordinator.needRejoin())
33             return Collections.emptyMap();
34 
35         return fetcher.fetchedRecords();
36     }

11行拉取本地缓存的消息,本地消息为空,16行重新去服务器拉取

 

这篇关于Kafka java消费者拉取消息源码的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!