给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,返回null。
输入分为2段,第一段是入环前的链表部分,第二段是链表环的部分,后台将这2个会组装成一个有环或者无环单链表
返回链表的环的入口结点即可。而我们后台程序会打印这个节点
输入:
{1,2},{3,4,5}
返回值:
3
说明:
返回环形链表入口节点,我们后台会打印该环形链表入口节点,即3
/* struct ListNode { int val; struct ListNode *next; ListNode(int x) : val(x), next(NULL) { } }; */ //先确定存在环,再确定环中结点数目,最后使用快慢结点确定环入口位置 class Solution { public: ListNode* EntryNodeOfLoop(ListNode* pHead) { if(pHead==nullptr) return nullptr; ListNode* fast = pHead->next; ListNode* slow = pHead; ListNode dummy(-1); dummy.next = pHead; ListNode* pNode; while(fast!=nullptr && fast->next!=nullptr &&slow!=nullptr)//使用快结点(step=2)、慢结点(step=1)确定是否有环, { if(fast ==slow) { pNode = fast; //若确定有环,则此时fast一定在环内 break; } fast = fast->next->next; slow = slow->next; } if(fast == nullptr || fast->next==nullptr || slow == nullptr) { return nullptr; } int loopNodeNum = 1; ListNode* pNewNode = pNode->next; //若确定有环,则此时fast一定在环内,一直向后走总会回到现在位置,即可得到环中节点数目 while(pNewNode!=pNode) { pNewNode = pNewNode->next; loopNodeNum++; } fast = dummy.next; slow = dummy.next; int i = 0; while(i<loopNodeNum) //快结点比慢结点早走loopNodeNum步,此时快结点到环的入口节点距离为dis=总长-loopNodeNum, { //而慢结点从头开始走dis步也就会到达环入口节点,因为从头到入口节点的距离也为dis2=总长-loopNodeNum, fast = fast->next; //所以快慢节点相遇的位置即为环入口节点 ++i; } while(fast!=slow) { fast = fast->next; slow = slow->next; } return slow; } };