今天,我面试了某大厂的java开发岗位,迎面走来一位风尘仆仆的中年男子,手里拿着屏幕还亮着的mac,他冲着我礼貌的笑了笑,然后说了句“不好意思,让你久等了”,然后示意我坐下,说:“我们开始吧。看了你的简历,觉得你对redis应该掌握的不错,我们今天就来讨论下redis......”。我想:“来就来,兵来将挡水来土掩”。
我:首先redis内部使用一个redisObject对象来表示所有的key和value,redisObject最主要的信息如上图所示:type表示一个value对象具体是何种数据类型,encoding是不同数据类型在redis内部的存储方式。比如:type=string表示value存储的是一个普通字符串,那么encoding可以是raw或者int。
我顿了一下,接着说:下面我简单说下5种数据类型:
1、string是redis最基本的类型,可以理解成与memcached一模一样的类型,一个key对应一个value。value不仅是string,也可以是数字。string类型是二进制安全的,意思是redis的string类型可以包含任何数据,比如jpg图片或者序列化的对象。string类型的值最大能存储512M。
2、Hash是一个键值(key-value)的集合。redis的hash是一个string的key和value的映射表,Hash特别适合存储对象。常用命令:hget,hset,hgetall等。
3、list列表是简单的字符串列表,按照插入顺序排序。可以添加一个元素到列表的头部(左边)或者尾部(右边) 常用命令:lpush、rpush、lpop、rpop、lrange(获取列表片段)等。应用场景:list应用场景非常多,也是Redis最重要的数据结构之一,比如twitter的关注列表,粉丝列表都可以用list结构来实现。数据结构:list就是链表,可以用来当消息队列用。redis提供了List的push和pop操作,还提供了操作某一段的api,可以直接查询或者删除某一段的元素。实现方式:redis list的是实现是一个双向链表,既可以支持反向查找和遍历,更方便操作,不过带来了额外的内存开销。
4、set是string类型的无序集合。集合是通过hashtable实现的。set中的元素是没有顺序的,而且是没有重复的。常用命令:sdd、spop、smembers、sunion等。应用场景:redis set对外提供的功能和list一样是一个列表,特殊之处在于set是自动去重的,而且set提供了判断某个成员是否在一个set集合中。
5、zset和set一样是string类型元素的集合,且不允许重复的元素。常用命令:zadd、zrange、zrem、zcard等。使用场景:sorted set可以通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。当你需要一个有序的并且不重复的集合列表,那么可以选择sorted set结构。和set相比,sorted set关联了一个double类型权重的参数score,使得集合中的元素能够按照score进行有序排列,redis正是通过分数来为集合中的成员进行从小到大的排序。实现方式:Redis sorted set的内部使用HashMap和跳跃表(skipList)来保证数据的存储和有序,HashMap里放的是成员到score的映射,而跳跃表里存放的是所有的成员,排序依据是HashMap里存的score,使用跳跃表的结构可以获得比较高的查找效率,并且在实现上比较简单。
我:我之前总结了一张图,关于数据类型的应用场景,如果您感兴趣,可以去我的掘金看。。
<dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-pool2</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.session</groupId> <artifactId>spring-session-data-redis</artifactId> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <optional>true</optional> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> </dependencies>
server: port: 8082 servlet: session: timeout: 30ms spring: cache: type: redis redis: host: 127...1 port: 6379 password: # redis默认情况下有16个分片,这里配置具体使用的分片,默认为0 database: lettuce: pool: # 连接池最大连接数(使用负数表示没有限制),默认8 max-active: 100
创建实体类User.java
public class User implements Serializable{ private static final long serialVersionUID = 662692455422902539L; private Integer id; private String name; private Integer age; public User() { } public User(Integer id, String name, Integer age) { this.id = id; this.name = name; this.age = age; } public Integer getId() { return id; } public void setId(Integer id) { this.id = id; } public String getName() { return name; } public void setName(String name) { this.name = name; } public Integer getAge() { return age; } public void setAge(Integer age) { this.age = age; } @Override public String toString() { return "User{" + "id=" + id + ", name='" + name + '\'' + ", age=" + age + '}'; } }
默认情况下的模板只能支持RedisTemplate<String, String>,也就是只能存入字符串,所以自定义模板很有必要。添加配置类RedisCacheConfig.java
@Configuration @AutoConfigureAfter(RedisAutoConfiguration.class) public class RedisCacheConfig { @Bean public RedisTemplate<String, Serializable> redisCacheTemplate(LettuceConnectionFactory connectionFactory) { RedisTemplate<String, Serializable> template = new RedisTemplate<>(); template.setKeySerializer(new StringRedisSerializer()); template.setValueSerializer(new GenericJackson2JsonRedisSerializer()); template.setConnectionFactory(connectionFactory); return template; } }
测试类
@RestController @RequestMapping("/user") public class UserController { public static Logger logger = LogManager.getLogger(UserController.class); @Autowired private StringRedisTemplate stringRedisTemplate; @Autowired private RedisTemplate<String, Serializable> redisCacheTemplate; @RequestMapping("/test") public void test() { redisCacheTemplate.opsForValue().set("userkey", new User(1, "张三", 25)); User user = (User) redisCacheTemplate.opsForValue().get("userkey"); logger.info("当前获取对象:{}", user.toString()); }
然后在浏览器访问,观察后台日志 http://localhost:8082/user/test
spring cache具备很好的灵活性,不仅能够使用SPEL(spring expression language)来定义缓存的key和各种condition,还提供了开箱即用的缓存临时存储方案,也支持和主流的专业缓存如EhCache、Redis、Guava的集成。定义接口UserService.java
public interface UserService { User save(User user); void delete(int id); User get(Integer id); }
接口实现类UserServiceImpl.java
@Service public class UserServiceImpl implements UserService{ public static Logger logger = LogManager.getLogger(UserServiceImpl.class); private static Map<Integer, User> userMap = new HashMap<>(); static { userMap.put(1, new User(1, "肖战", 25)); userMap.put(2, new User(2, "王一博", 26)); userMap.put(3, new User(3, "杨紫", 24)); } @CachePut(value ="user", key = "#user.id") @Override public User save(User user) { userMap.put(user.getId(), user); logger.info("进入save方法,当前存储对象:{}", user.toString()); return user; } @CacheEvict(value="user", key = "#id") @Override public void delete(int id) { userMap.remove(id); logger.info("进入delete方法,删除成功"); } @Cacheable(value = "user", key = "#id") @Override public User get(Integer id) { logger.info("进入get方法,当前获取对象:{}", userMap.get(id)==null?null:userMap.get(id).toString()); return userMap.get(id); } }
为了方便演示数据库的操作,这里直接定义了一个Map<Integer,User> userMap,这里的核心是三个注解@Cachable、@CachePut和@CacheEvict。测试类:UserController
@RestController @RequestMapping("/user") public class UserController { public static Logger logger = LogManager.getLogger(UserController.class); @Autowired private StringRedisTemplate stringRedisTemplate; @Autowired private RedisTemplate<String, Serializable> redisCacheTemplate; @Autowired private UserService userService; @RequestMapping("/test") public void test() { redisCacheTemplate.opsForValue().set("userkey", new User(1, "张三", 25)); User user = (User) redisCacheTemplate.opsForValue().get("userkey"); logger.info("当前获取对象:{}", user.toString()); } @RequestMapping("/add") public void add() { User user = userService.save(new User(4, "李现", 30)); logger.info("添加的用户信息:{}",user.toString()); } @RequestMapping("/delete") public void delete() { userService.delete(4); } @RequestMapping("/get/{id}") public void get(@PathVariable("id") String idStr) throws Exception{ if (StringUtils.isBlank(idStr)) { throw new Exception("id为空"); } Integer id = Integer.parseInt(idStr); User user = userService.get(id); logger.info("获取的用户信息:{}",user.toString()); } }
用缓存要注意,启动类要加上一个注解开启缓存
@SpringBootApplication(exclude=DataSourceAutoConfiguration.class) @EnableCaching public class Application { public static void main(String[] args) { SpringApplication.run(Application.class, args); } }
1、先调用添加接口:http://localhost:8082/user/add
2、再调用查询接口,查询id=4的用户信息:
可以看出,这里已经从缓存中获取数据了,因为上一步add方法已经把id=4的用户数据放入了redis缓存 3、调用删除方法,删除id=4的用户信息,同时清除缓存
4、再次调用查询接口,查询id=4的用户信息:
没有了缓存,所以进入了get方法,从userMap中获取。
1、@Cacheable 根据方法的请求参数对其结果进行缓存
2、@CachePut 根据方法的请求参数对其结果进行缓存,和@Cacheable不同的是,它每次都会触发真实方法的调用。参数描述见上。3、@CacheEvict 根据条件对缓存进行清空
setRedis(key, value, time+Math.random()*10000);
如果Redis是集群部署,将热点数据均匀分布在不同的Redis库中也能避免全部失效。或者设置热点数据永不过期,有更新操作就更新缓存就好了(比如运维更新了首页商品,那你刷下缓存就好了,不要设置过期时间),电商首页的数据也可以用这个操作,保险。
public static String getData(String key) throws InterruptedException { //从Redis查询数据 String result = getDataByKV(key); //参数校验 if (StringUtils.isBlank(result)) { try { //获得锁 if (reenLock.tryLock()) { //去数据库查询 result = getDataByDB(key); //校验 if (StringUtils.isNotBlank(result)) { //插进缓存 setDataToKV(key, result); } } else { //睡一会再拿 Thread.sleep(100L); result = getData(key); } } finally { //释放锁 reenLock.unlock(); } } return result; }
补充一下:Redis4.0加入了LFU(least frequency use)淘汰策略,包括volatile-lfu和allkeys-lfu,通过统计访问频率,将访问频率最少,即最不经常使用的KV淘汰。
appendfsync yes appendfsync always #每次有数据修改发生时都会写入AOF文件。 appendfsync everysec #每秒钟同步一次,该策略为AOF的缺省策略。
AOF可以做到全程持久化,只需要在配置中开启 appendonly yes。这样redis每执行一个修改数据的命令,都会把它添加到AOF文件中,当redis重启时,将会读取AOF文件进行重放,恢复到redis关闭前的最后时刻。
上面是psync的执行流程:从节点发送psync[runId][offset]命令,主节点有三种响应:(1)FULLRESYNC:第一次连接,进行全量复制 (2)CONTINUE:进行部分复制 (3)ERR:不支持psync命令,进行全量复制
关于部分复制有以下几点说明:1、部分复制主要是Redis针对全量复制的过高开销做出的一种优化措施,使用psync[runId][offset]命令实现。当从节点正在复制主节点时,如果出现网络闪断或者命令丢失等异常情况时,从节点会向主节点要求补发丢失的命令数据,主节点的复制积压缓冲区将这部分数据直接发送给从节点,这样就可以保持主从节点复制的一致性。补发的这部分数据一般远远小于全量数据。2、主从连接中断期间主节点依然响应命令,但因复制连接中断命令无法发送给从节点,不过主节点内的复制积压缓冲区依然可以保存最近一段时间的写命令数据。3、当主从连接恢复后,由于从节点之前保存了自身已复制的偏移量和主节点的运行ID。因此会把它们当做psync参数发送给主节点,要求进行部分复制。4、主节点接收到psync命令后首先核对参数runId是否与自身一致,如果一致,说明之前复制的是当前主节点;之后根据参数offset在复制积压缓冲区中查找,如果offset之后的数据存在,则对从节点发送+COUTINUE命令,表示可以进行部分复制。因为缓冲区大小固定,若发生缓冲溢出,则进行全量复制。5、主节点根据偏移量把复制积压缓冲区里的数据发送给从节点,保证主从复制进入正常状态。
上面是全量复制的流程。主要有以下几步:
1、从节点发送psync ? -1命令(因为第一次发送,不知道主节点的runId,所以为?,因为是第一次复制,所以offset=-1)。
2、主节点发现从节点是第一次复制,返回FULLRESYNC {runId} {offset},runId是主节点的runId,offset是主节点目前的offset。
3、从节点接收主节点信息后,保存到info中。
4、主节点在发送FULLRESYNC后,启动bgsave命令,生成RDB文件(数据持久化)。
5、主节点发送RDB文件给从节点。到从节点加载数据完成这段期间主节点的写命令放入缓冲区。
6、从节点清理自己的数据库数据。
7、从节点加载RDB文件,将数据保存到自己的数据库中。
8、如果从节点开启了AOF,从节点会异步重写AOF文件。
关于部分复制有以下几点说明:
1、部分复制主要是Redis针对全量复制的过高开销做出的一种优化措施,使用psync[runId][offset]命令实现。当从节点正在复制主节点时,如果出现网络闪断或者命令丢失等异常情况时,从节点会向主节点要求补发丢失的命令数据,主节点的复制积压缓冲区将这部分数据直接发送给从节点,这样就可以保持主从节点复制的一致性。补发的这部分数据一般远远小于全量数据。
2、主从连接中断期间主节点依然响应命令,但因复制连接中断命令无法发送给从节点,不过主节点内的复制积压缓冲区依然可以保存最近一段时间的写命令数据。
3、当主从连接恢复后,由于从节点之前保存了自身已复制的偏移量和主节点的运行ID。因此会把它们当做psync参数发送给主节点,要求进行部分复制。
4、主节点接收到psync命令后首先核对参数runId是否与自身一致,如果一致,说明之前复制的是当前主节点;之后根据参数offset在复制积压缓冲区中查找,如果offset之后的数据存在,则对从节点发送+COUTINUE命令,表示可以进行部分复制。因为缓冲区大小固定,若发生缓冲溢出,则进行全量复制。
5、主节点根据偏移量把复制积压缓冲区里的数据发送给从节点,保证主从复制进入正常状态。
面试官:那主从复制会存在哪些问题呢?
我:主从复制会存在以下问题:
1、一旦主节点宕机,从节点晋升为主节点,同时需要修改应用方的主节点地址,还需要命令所有从节点去复制新的主节点,整个过程需要人工干预。
2、主节点的写能力受到单机的限制。
3、主节点的存储能力受到单机的限制。
4、原生复制的弊端在早期的版本中也会比较突出,比如:redis复制中断后,从节点会发起psync。此时如果同步不成功,则会进行全量同步,主库执行全量备份的同时,可能会造成毫秒或秒级的卡顿。
面试官:那比较主流的解决方案是什么呢?
我:当然是哨兵啊。
面试官:那么问题又来了。那你说下哨兵有哪些功能?
我:如图,是Redis Sentinel(哨兵)的架构图。Redis Sentinel(哨兵)主要功能包括主节点存活检测、主从运行情况检测、自动故障转移、主从切换。Redis Sentinel最小配置是一主一从。Redis的Sentinel系统可以用来管理多个Redis服务器,该系统可以执行以下四个任务:
1、监控:不断检查主服务器和从服务器是否正常运行。
2、通知:当被监控的某个redis服务器出现问题,Sentinel通过API脚本向管理员或者其他应用程序发出通知。
3、自动故障转移:当主节点不能正常工作时,Sentinel会开始一次自动的故障转移操作,它会将与失效主节点是主从关系的其中一个从节点升级为新的主节点,并且将其他的从节点指向新的主节点,这样人工干预就可以免了。
4、配置提供者:在Redis Sentinel模式下,客户端应用在初始化时连接的是Sentinel节点集合,从中获取主节点的信息。
面试官:那你能说下哨兵的工作原理吗?
我:话不多说,直接上图:
1、每个Sentinel节点都需要定期执行以下任务:每个Sentinel以每秒一次的频率,向它所知的主服务器、从服务器以及其他的Sentinel实例发送一个PING命令。(如上图)
2、如果一个实例距离最后一次有效回复PING命令的时间超过down-after-milliseconds所指定的值,那么这个实例会被Sentinel标记为主观下线。(如上图)
3、如果一个主服务器被标记为主观下线,那么正在监视这个服务器的所有Sentinel节点,要以每秒一次的频率确认主服务器的确进入了主观下线状态。
4、如果一个主服务器被标记为主观下线,并且有足够数量的Sentinel(至少要达到配置文件指定的数量)在指定的时间范围内同意这一判断,那么这个主服务器被标记为客观下线。
5、一般情况下,每个Sentinel会以每10秒一次的频率向它已知的所有主服务器和从服务器发送INFO命令,当一个主服务器被标记为客观下线时,Sentinel向下线主服务器的所有从服务器发送INFO命令的频率,会从10秒一次改为每秒一次。
6、Sentinel和其他Sentinel协商客观下线的主节点的状态,如果处于SDOWN状态,则投票自动选出新的主节点,将剩余从节点指向新的主节点进行数据复制。
7、当没有足够数量的Sentinel同意主服务器下线时,主服务器的客观下线状态就会被移除。当主服务器重新向Sentinel的PING命令返回有效回复时,主服务器的主观下线状态就会被移除。
本文在一次面试的过程中讲述了Redis是什么,Redis的特点和功能,Redis缓存的使用,Redis为什么能这么快,Redis缓存的淘汰策略,持久化的两种方式,Redis高可用部分的主从复制和哨兵的基本原理。只要功夫深,铁杵磨成针,平时准备好,面试不用慌。虽然面试不一定是这样问的,但万变不离其“宗”。(笔者觉得这种问答形式的博客很不错,可读性强而且读后记的比较深刻)
来源:掘金